ITE'S PROPOSED RECOMMENDED PRACTICE GUIDELINES PROBLEMS AND SOLUTIONS

MATS JÄRLSTRÖM

Advice from Dr. Alexei A. Maradudin

D."...the duration of the amber cycle, and your suggestions for correcting them, are based on simple physics principles and on the careful
${ }_{\text {sii }}^{\text {du }}$ observations you have carried out. As a consequence, it is difficult to argue against them without violating physics."

Best regards, Alex

Timeline of the State of the Art

ITE’s Minimum Permissive Yellow Model

$$
\begin{aligned}
& \text { Area }=\text { traveled distance } \\
& \qquad x_{C}=v_{0} \cdot Y_{P}
\end{aligned}
$$

GHM's critical distance

$$
x_{C}=v_{0} \cdot t_{P R}+\frac{v_{0}^{2}}{2 a_{\max }}
$$

Set the two distances equal

$$
v_{0} \cdot Y_{P}=v_{0} \cdot t_{P R}+\frac{v_{0}^{2}}{2 a_{\max }}
$$

Solve for Y_{P} (Divide by v_{0})

$$
Y_{P}=t_{P R}+\frac{v_{0}}{2 a_{\max }}
$$

ITE’s Minimum Permissive Yellow Model

$$
\begin{aligned}
& \text { Area }=\text { traveled distance } \\
& \qquad x_{C}=v_{0} \cdot Y_{P}
\end{aligned}
$$

GHM's critical distance

$$
x_{C}=v_{0} \cdot t_{P R}+\frac{v_{0}^{2}}{2 a_{\max }}
$$

Set the two distances equal

$$
v_{0} \cdot Y_{P}=v_{0} \cdot t_{P R}+\frac{v_{0}^{2}}{2 a_{\max }}
$$

Solve for Y_{P} (Divide by v_{0})

$$
Y_{P}=t_{P R}+\frac{v_{0}}{2 a_{\max }}
$$

ITE’s ZERO Tolerance Solution - Problem

Universal Graph Solution

Minimum Yellow Change Interval and Vehicle Motion Graph

Mats Järlström • Beaverton, Oregon, USA • March 3, 2016• Rev. A

Permissive

 Entry Distance Term"Permissive", $Y_{P} \geq t+\frac{V_{L}}{a}-\frac{V_{E}}{2 a}+\frac{d_{E}}{V_{E}}$
"Restrictive", $Y_{R} \geq t+\frac{V_{L}}{a}-\frac{V_{E}}{2 a}+\frac{d_{C E}}{V_{E}}$
Where $V_{L} \geq V_{E}>0$ and:
$d_{E}=$ Legal definition of vehicle entry distance
$d_{C E}=$ Legal definition of vehicle clearance and exit distance
($V_{E}=V_{L}$ yields GHM's original solution)

This graph is dedicated in loving memory to Mariaine lärlströn, David and Loìs Hodge and Gördon Long.

Sir Isaac Newton's Laws of Motion States:

First law :
"A body at rest will remain at rest, and a body in motion will remain in motion unless it is acted upon by an external force."

Second law:
"The force acting on an object is equal to the mass of that object times its acceleration."

ITE's incorrect uphill grade implementation

A Simplified Grade Solution

$$
G_{x}=\frac{G}{\sqrt{1+g^{2}}} \approx G \quad G_{z}=\frac{g G}{\sqrt{1+g^{2}}} \approx g G
$$

Rise, Z

Gravity, G

Vehicle Dynamics - VBOX Live Demo

Live STOP, GO and RIGHT TURN demo video (.avi) and data (.vbo) files:
http://www.jarlstrom.com/ite/VBOX Live Demo.zip (27 MB)
Free RACELOGIC analysis software, Circuit Tools (ver. 2):
https://www.vboxmotorsport.co.uk/index.php/us/customer-area/software
The followina 10 dages show screen captures from the above files.

Problems with ITE's Recommended Practice

Zero tolerance model creates driver dilemmas
Model does not apply to turning maneuvers
The "permissive" entry dilemma
Incorrect 1982 grade implementation

Conclusion: ITE's RP needs to be revised

Questions

Disclaimer

Redistribution and use in source (original document form) and 'compiled' forms (converted to PDF, epub, HTML and other formats) with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code (original document form) must retain the above copyright notice, this list of conditions and the following disclaimer as the first lines of this file unmodified.

Redistributions in compiled form (transformed to other DTDs, converted to PDF, epub, HTML and other formats) must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS DOCUMENTATION IS PROVIDED BY MATS JÄRLSTRÖM "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FORA PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATS JÁRLSTROM BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS: OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright (c) 2019, Mats Järlström. All rights reserved.

Backup

Vehicle Dynamics - VBOX Live Demo

Live STOP, GO and RIGHT TURN demo video (.avi) and data (.vbo) files:
http://www.jarlstrom.com/ite/VBOX Live Demo.zip (27 MB)
Free RACELOGIC analysis software, Circuit Tools (ver. 2):
https://www.vboxmotorsport.co.uk/index.php/us/customer-area/software
The following 10 pages show screen captures from the above files.

DISTANCE - Yellow Onset: STOP

DISTANCE - Yellow Onset: GO

DISTANCE - Yellow Onset: RIGHT TURN

DISTANCE - Stop Bar: ALL (Reference)

TIME - Yellow Onset: STOP

TIME - Yellow Onset: GO

TIME - Yellow Onset: RIGHT TURN

TIME - Stop Bar: GO

TIME - Stop Bar: RIGHT TURN

TIME - Stop Bar: STOP

ITE's incorrect uphill grade implementation

Sir Isaac Newton's first law of motion states:

"A body at rest will remain at rest, and a body in motion will remain in motion unless it is acted upon by an external force."
Hence, an occupant of a vehicle moving at constant velocity in any spatial direction is not acted upon by an external force.

Sir Isaac Newton's second law of motion states:

"The force acting on an object is equal to the mass of that object times its acceleration."
Thus, an occupant of a vehicle will only experience an external force acted upon them if the vehicle is changing its motion in any spatial direction. The source to the change of vehicle motion can be from one or a combination of Earth's gravity on a grade or the vehicle's motor or its braking system or its steering mechanism.

