
 

A DETAILED INVESTIGATION OF CRASH RISK REDUCTION 

RESULTING FROM RED LIGHT CAMERAS  
IN SMALL URBAN AREAS 

 
Mark Burkey, Ph.D. 
Kofi Obeng, Ph.D. 

Co-Principal Investigators 

 

 
 

Urban Transit Institute 
Transportation Institute 

North Carolina Agricultural & Technical State University 
 

B402 General Classroom Building 
1601 East Market Street 
Greensboro, NC 27411 

 Telephone: (336) 334-7745    Fax: (336) 334-7093 
Internet Home Page: http://www.ncat.edu/~traninst   

 

 
 
 

Prepared for: 
U.S. Department of Transportation 

Research and Special Programs Administration 
Washington, DC 20590 

 

July 2004 
 



 

DISCLAIMER 
 
The contents of this report reflect the views of the authors who are responsible for the facts and 
the accuracy of the information presented herein. This document is distributed under the 
sponsorship of the Department of Transportation, University Research Institute Program, in the 
interest of information exchange. The U.S. Government assumes no liability for the contents or 
use thereof. 



 

TECHNICAL REPORT DOCUMENTATION PAGE 
1. Report No. 

  DTRS93-G-0018 
2. Government Accession No.

 
3. Recipient’s Catalog No. 
 

5. Report Date July 2004 4. Title and Subtitle 
A DETAILED INVESTIGATION OF CRASH RISK REDUCTION RESULTING 
FROM RED LIGHT CAMERAS IN SMALL URBAN AREAS  6. Performing Organization Code 

7. Author(s) MARK L. BURKEY, PH.D., KOFI OBENG, PH.D. 8. Performing Organization Report No.

 
10. Work Unit No.  9. Performing Organization Name and Address 

Urban Transit Institute 
The Transportation Institute 
NC A&T State University 
Greensboro, NC 27411 

11. Contract or Grant No. DTRS93-G-0018 

13. Type of Report and Period Covered

Final January 2003-August 2003 
12. Sponsoring Agency Name and Address 

US Department of Transportation 
Research and Special Programs Administration 
400 7th Street, SW 
Washington, DC 20590 14. Sponsoring Agency Code  

15. Supplementary Notes 

16. Abstract 
This is an update to the October 2003 version of this report.  Using the latest available data, we include an 

additional 12 months of accident data.  Additionally, several data coding errors were discovered in the original 

data set and corrected for this report.  Therefore, results from the October 2003 report should be disregarded. 

 

This paper analyzes the impact of red light cameras (RLCs) on crashes at signalized intersections. It examines 

total crashes and also breaks crashes into categories based on both severity (e.g., causing severe injuries or 

only property da7mage) and by type (e.g., angle, rear end).  Prompted by criticism of the simplistic methods 

and small data sets used in many studies of red light cameras, we relate the occurrence of these crashes to the 

characteristics of signalized intersections, presence or absence of RLC, traffic, weather and other variables. 

Using a large data set including 26 months before the introduction of RLCs, we analyze reported accidents 

occurring near 303 intersections over a 57-month period, for a total of 17,271 observations.   

17. Key Words 
Red Light Cameras 
RLC 
Intersections 

18. Distribution Statement

 

19. Security Classif. (of this report) 
UNCLASSIFIED 

20. Security Classif. (of this page)

UNCLASSIFIED 
21. No. of Pages 
54 

22. Price

N/A 

 

 



 

Executive Summary 
This paper analyzes the impact of red light cameras (RLCs) on crashes at signalized 
intersections. It examines total crashes and also breaks crashes into categories based on both 
severity (e.g., causing severe injuries or only property damage) and by type (e.g., angle, rear 
end).   

Prompted by criticism of the simplistic methods and small data sets used in many studies of 
red light cameras, we relate the occurrence of these crashes to the characteristics of signalized 
intersections, presence or absence of RLC, traffic, weather and other variables. Using a large 
data set, including 26 months before the introduction of RLCs, we analyze reported accidents 
occurring near 303 intersections over a 57-month period, for a total of 17,271 observations.  
Employing maximum likelihood estimation of Poisson regression models, we find that: 

The results do not support the view that red light cameras reduce crashes. Instead, we find 
that RLCs are associated with higher levels of many types and severity categories of crashes. 

An overall time trend during the study indicated that accidents are becoming less frequent, 
about 5 percent per year. 

However, the intersections where RLCs were installed are not experiencing the same 
decrease. When analyzing total crashes, we find that RLCs have a statistically significant 
(p<0.001) and large (40% increase) effect on accident rates.   

In addition, RLCs have a statistically significant, positive impact on rear-end accidents, 
sideswipes, and accidents involving cars turning left (traveling on the same roadway). 

The one type of accident found to experience a decrease at RLC sites are those involving a 
left turning car and a car traveling on a different roadway.  

When accidents are broken down by severity, RLCs were found to have a statistically 
significant (p<0.001) and large effect (40-50% increase) on property damage only and 
possible injury crashes.  There was a positive, but statistically insignificant estimated effect 
on severe (fatal, evident, and disabling) accidents. 

These results run contrary to the many studies in the RLC literature.  Previous studies have 
sometimes found an increase in rear-end accidents, but often find offsetting decreases in 
other types of accidents.  While this study incorporated many advances in methodology over 
previous studies, additional work remains to be done.  Because accident studies rarely use a 
true experimental design and data are not perfectly observable, additional careful study of 
RLCs is warranted to verify our results.   

 

 

 

 

*This is an update to the October 2003 version of this report.  Using the latest available data, 
we include an additional 12 months of accident data.  Additionally, several data coding errors 
were discovered in the original data set, and corrected for this report.  Therefore, results from 
the October 2003 report should be disregarded.   

* We would like to acknowledge the assistance of the GDOT and Tony Ku of the NCDOT. 
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I. Introduction 
 
 

1.1 Problem Statement  
Nearly half of all accidents in the U.S. occur at or near intersections (US DOT, 1999, p. 50). 
Consequently, many studies have been conducted that relate various aspects of intersections 
to safety and accident rates to develop improvement strategies. One such strategy is 
automated enforcement of traffic signals using cameras, i.e., red light cameras (RLCs), which 
has been suggested and used in some cities to reduce red light running. The potential of these 
cameras in reducing accidents and improving safety have been reported in few studies, with 
most studies reporting mixed results. For example, Retting et al. (1999a), Retting and 
Kyrychenko (2002), and Milazzo et al. (2001), using before and after data found RLCs 
reduce crashes at intersections. On the other hand, Andreassen’s (1995) longitudinal study 
spanning a 10-year period found reductions in crashes at high accident sites and increases in 
crashes at low accident sites. McFadden and McGee (1999) add another twist in their review 
of studies on automated enforcement of red light running. While accepting reductions in 
violations and cost savings as benefits, they suggested that improved methodology and more 
data are needed to validate and quantify the effects of RLCs on crashes, thus casting some 
doubts on prevailing views on the benefits of RLCs. 

Despite McFadden and McGee’s suggestion, no existing study carefully examines the 
characteristics of signalized intersections, weather, and accidents together to determine the 
role of RLCs in a comprehensive intersection-safety program. Similarly, there are few 
studies, if any, of RLCs that use extensive data including those for intersections that have no 
RLCs and that can be considered as control groups. Thus, there is still the need for studies of 
RLCs and their impacts on safety that control for environmental conditions and intersection 
characteristics. Without such a study, some of the claimed benefits of RLCs could be a result 
of inadequate modeling or artifacts of the methodologies used. 

1.2 Objectives 
Given the need for further studies on RLCs established above, the objective of this research is 
to analyze the impact of RLCs on red light violations and accidents in a holistic framework 
by accounting for the roles of intersection characteristics and environmental variables in such 
accidents, and that also account for changes in accidents at intersections with no RLCs. 
Because single policy changes do not occur in a vacuum, and because the characteristics of 
signalized intersections vary widely, policy makers and transportation engineers must be able 
to choose the most appropriate locations for RLCs. Simultaneously, this study identifies other 
variables that are associated with accident rates at signalized intersections.  
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1.3 Research Approach  
Though the research methodology is described in detail elsewhere in this report, a brief 
summary is appropriate at this point. An extensive literature review was conducted to assess 
the existing knowledge on intersection safety, red light running, and the impacts of red light 
cameras. Thereafter, Poisson and negative binomial time-series regression models were 
developed to relate the characteristics of signalized intersections (including road 
characteristics and traffic volumes) and environmental conditions to the type and severity of 
accidents. The data on the characteristics were collected for all signalized intersections in 
Greensboro in collaboration with the Traffic Engineering Department of the City of 
Greensboro, as were data on traffic counts (average daily volume), signal timing, number of 
lanes, and other characteristics. From the North Carolina Department of Transportation 
(NCDOT), we obtained data for each signalized intersection on accident rates, types of 
accidents (e.g., rear-end collisions, front to side impacts), severity of accidents (e.g., crashes 
resulting in fatalities, possible injury, and property damage), and when the accidents 
occurred. Data on snowfall/ice and total precipitation were obtained from the National 
Oceanic and Atmospheric Administration. In addition, information on when the RLCs were 
placed at each intersection and the characteristics of these RLCs were collected. 

A major finding uncovered in the preliminary data collection and analyses of NCDOT 
guidelines for RLC installation pointed to low amber times for several intersections with 
RLCs (compared to the minimum specified in the North Carolina state enabling legislation) 
that led to many red light violation tickets issued. This preliminary finding resulted in policy 
changes in Greensboro and its adjoining city, High Point, in terms of retiming some of the 
red lights at intersections with RLCs.  

The analysis found that in contrast with previous U.S. studies on RLCs, signalized 
intersections had higher accident rates following the implementation of RLCs when 
compared to similar intersections. This finding is true for all but one category of accidents 
studied. Only for Left Turn, Different Roadway did we find a negative association between 
RLCs and accident rates. Given that this type of accident accounts for less that 3.6 percent of 
accidents overall and less than 2.5 percent of accidents at the RLC sites, this will have little 
effect overall. In most other cases, large, statistically significant increases in accident rates 
were found.  

1.4. Choice of study area 
Greensboro, North Carolina, in Guilford County, is located approximately 80 miles WNW of 
the capital, Raleigh. Interstates 85 and 40 pass through the southern part of the city. 
According to the 2000 Census, 223,891 of the county’s 421,048 people live in Greensboro. In 
the county there were 333,534 vehicles registered to 298,732 licensed drivers in 1999 
(Wiliszowski et al., 2001). The area has experienced a large amount of growth, with the city, 
county, and state seeing population increases of 21-22 percent over the last decade. There are 
648.8 persons per square mile in the county, compared with 165.2 persons per square mile in 
the state as a whole. Greensboro is part of the Greensboro/Winston-Salem/High Point, North 
Carolina, Metropolitan Statistical Area. 
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Table 1.1: Example of Monthly Tickets Data 

H o l d e n  R o a d  S p r i n g  G a r d e n  R o a d 1 5 0
W e n d o v e r  A v e n u e E n g l i s h  S t r e e t 6 9

B a t t l e g r o u n d  A v e n u e B r a s s f i e l d  R o a d 9 0
H i g h  P o in t  R o a d P in e c r o f t  R o a d 3 1 2

W e n d o v e r  A v e n u e C h u r c h  S t r e e t 1 3 8
H o l d e n  R o a d  W e n d o v e r  A v e n u e 1 0 9

R a n d le m a n  R o a d F l o r i d a  S t r e e t 1 2
R a n d le m a n  R o a d C r e e k r i d g e  R o a d 1 4 5

B a t t l e g r o u n d  A v e n u e P i s g a h  C h u r c h  R o a d 2 3 2
H o l d e n  R o a d  M c C u i s i t i o n 7 2

H i g h  P o in t  R o a d M e r r i t t  R o a d 2 3
C h u r c h  S t r e e t C o n e  B l v d 9

B a t t l e g r o u n d  A v e n u e C o n e  B l v d 3 4 5
W e n d o v e r  A v e n u e B ig  T r e e 8 6
F r e e m a n  M i l l  R o a d C o l i s u e m 3 4

S p r i n g  S t r e e t F r i e n d l y  A v e n u e 5 6
W e n d o v e r  A v e n u e H i l l  S t r e e t 2 2 8
W e n d o v e r  A v e n u e B r i d f o r d  P a r k w a y 3 9

D e c e m b e r  2 0 0 1  
T i c k e t s  I s s u e dS t r e e t  1 S t r e e t  2

 

The primary means of transportation in Greensboro is owner-occupied vehicles, with 79.1 
percent of the transportation mode share involving driving alone and 12.5 percent carpooling 
(Greensboro City Data Book, 2001). The Greensboro Department of Transportation (GDOT) 
maintains 876 miles of roadway, while the NCDOT maintains another 236 miles, including 
the interstates, US-routes, and major state highways. 

During the study period, there were 413 intersections controlled by traffic signals. According 
to the Greensboro Police Department, there were 498 accidents in 1999 classified as being 
caused by red light running.  

Greensboro and its neighboring city of High Point contracted with Peek Traffic to install and 
operate their RLCs. The contracts were originally for three years1 and specify a $50 civil fine 
for violations. Of this, the city is paid $15, with the remaining $35 retained by Peek Traffic. 
The first two cameras in Greensboro began operation on February 7, 2001, and citations were 
mailed out to offenders beginning February 15, 2001.2 As of May 2002, there were 18 
cameras operating, with plans for several more. Over the first year of the RLC program, the 
average number of tickets issued per camera, per day was 6.8, resulting in more than $1.2 
million in fines. 

Table 1.1 presents the monthly citations for December 2001 at each of the camera locations. 
The high variability in these numbers, ranging from 9 to 345 at two intersections on Cone 
Boulevard, suggests that the intersections are extremely heterogeneous regarding red-light- 
running behavior. While one might think that traffic volume accounts for most of these 
differences, the average daily traffic volume (ADV) of the lowest ticket and highest ticket 

                                                 
1 As of June 2004, High Point renewed the contract, and Greensboro is on a month-to-month contract while 
it decides whether to renew. 
2 Because our data are grouped into monthly observations, and few tickets were issued until the end of 
February 2001, we treat March 2001 as the official start date of the program in our data analysis. 
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locations are 38,750 and 55,325 respectively. Thus, as much information as possible should 
be collected about these intersections to fully understand red-light-running behavior and 
accidents. 

A concern of all safety advocates is that new safety programs, such as red light cameras, 
should be implemented in the most efficient manner possible. There have been some critics 
in Greensboro who worry that the locations of some cameras may not be chosen to maximize 
safety, but rather to maximize citations. Their evidence is of two types. First, it is generally 
not the city engineers who choose the placement of the RLCs. In High Point, the city 
“…developed a list of about 30 potential intersections, and PEEK Traffic officials 
(narrowed) that list to about 10 where the cameras (were) installed…” (Garber, 2000). 
Because Peek’s contract specifies payment of $35 per citation and no compensation for 
accident reduction, the final decision regarding locations is not done with the proper 
incentives in mind. 

As possible evidence of the inefficient location of RLCs, another newspaper article noted, 
“Of the 23 Greensboro intersections with the most accidents caused by red light violators, 
only four have cameras…” (Reese, 2002). While all such intersections may not be 
appropriate for red light cameras, it is understandable that one might wonder why more of 
these intersections were not targeted.  
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2. Review of Relevant Literature 
This research project determines the role of RLCs in reducing accidents at intersections. 
Because of the nature of RLCs, the focus of the research will be on signalized intersections. 
To properly determine the causes of accidents at these intersections, it is necessary to review 
the literature on factors that influence intersection safety in general, review previous studies 
of red light running, and also review previous studies about the impact of RLCs on red light 
running and safety. Thus, the literature review is broken down into three sections as follows: 

• Research on Intersection Safety  
• Red Light Running  
• Red Light Cameras 

2.1.  Research on Intersection Safety 
Of the 6,394,000 automobile crashes in the U.S. in 2000, 44 percent occurred at intersections 
or were classified as “intersection-related.” Of these, 47 percent occurred at intersections 
with traffic signals (NHTSA, Traffic Safety Facts, 2000). The nature of intersections poses a 
special set of dangers for vehicles, pedestrians, and bicyclists. For vehicles, intersections are 
likely to involve dangerous “angle” crashes where little protection is given to drivers and 
occupants, and rear-end collisions where whiplash injuries are common. Approximately 22 
percent of fatalities and 46 percent of injuries to pedestrians occur at intersections. 

The Advocates for Highway and Auto Safety (2001) identified nine main ways to improve 
intersection safety: 

1) Changes to or installation of appropriate static traffic control devices 
2) Installing traffic signals 
3) Proper timing of traffic signals 
4) Installing dedicated turning lanes 
5) Removing sight distance restrictions 
6) Use of roundabouts 
7) Use of Intelligent Transportation Systems (ITS) 
8) Automated enforcement of red light running 
9) Better signing such as larger, brighter stop, yield, and speed limit information 

 

Within these nine suggestions are components that deal with structural changes, law 
enforcement, and conveying information to drivers. The standard protocol of most modern 
traffic-safety campaigns focuses on the “Three E’s”: Engineering, Enforcement, and 
Education.  

Tarawneh et al. (2001) found that an education campaign significantly increased drivers’ 
understanding of traffic laws associated with red light running. However, the Insurance 
Institute for Highway Safety (IIHS) (2001) criticizes the role of education in increasing 
safety and believes that engineering and enforcement efforts are much more important.  

 
Many times enforcement efforts are done on a high intensity, but discontinuous basis (often 
called a “blitz” approach). These efforts can significantly affect safety, but are too costly to 
be used continuously. However, a low level of targeted enforcement can have large benefits. 
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In Australia, several areas have been using Random Road Watch programs. These programs 
randomly monitor areas of roadway for two-hour periods of time, using marked patrol cars. 
The intensity of the effort is chosen at a level that can be sustained over the long run, and has 
been found to reduce accidents significantly, particularly fatal crashes (down 31%) 
(Newstead et al., 2001). 

When analyzing strategies for safety improvements on roadways, one must first establish that 
a given strategy will produce the desired results. Occasionally, the goals of a safety program 
are measured in terms of compliance with the law. This is often the case with seatbelt 
programs, speed reduction programs, and child safety seat programs. However, the 
underlying goal should never be ignored, which is to reduce crashes and the resulting 
fatalities, injuries, and property damage. 

Once a strategy is known to increase safety, good estimates of the extent of its benefits 
should be made for various types of its applications. The main purpose of quantifying the 
benefits is so that reasonably accurate studies of efficiency can be made. Except on social 
grounds, a strategy with known benefits is of no practical value if its costs exceed the 
benefits gained, or if a strategy with similar benefits can be implemented with lower costs. 
The most obvious benefits to a safety program are reductions in fatalities, injuries, and 
property damage. There are two ways that injuries and damages are assessed in accident 
records. The most common, the KABCO method, categorizes accidents and injuries as: 

K: Killed 
A: Incapacitating or Disabling Injury 
B: Not Incapacitating, but Evident Injury 
C: Possible Injury 
O: No Injury, Property Damage Only (PDO) 
Another accident severity scale used is the MAIS or Maximum Abbreviated Injury Score. It 
classifies accidents as follows: 

Fatal 
Critical (MAIS 5) 
Severe (MAIS 4) 
Serious (MAIS 3) 
Moderate (MAIS 2) 
Minor (MAIS 1) 
No Injury (MAIS 0) 
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Under both methods, accident classification is somewhat subjective and normally determined 
by a police officer at the scene. In the present study, we use the KABCO system as reported 
in our accident data. To compare severity between different types of accidents, it is 
convenient to attach a dollar value to each type of accident or injury. In October 1994, the 
Federal Highway Administration (FHWA) issued a list of “Comprehensive Cost Estimates,” 
listed in Table 2.1. These values were updated to 2002 dollars by the investigators of this 
project.3 

Also listed in Table 2.1 are “Standardized Crash Cost Estimates for North Carolina,” issued 
in December 2001, by the NCDOT (Troy, 2001). The values determined in this report are 
also termed “comprehensive,” in that they include estimates of medical, work loss, employer 
costs, traffic delay, property damage, and changes in quality of life. Though these cost 
estimates were issued in 2001, they are measured in terms of year 2000 dollars. 

Table 2.1: Comprehensive Costs, Each Occurrence (KABC Scale) 

Severity Description FHWA (1994) FHWA (2002) NCDOT 2001
K Fatal $2,600,000 $2,979,600 $3,300,000
A Incapacitating 180,000 206,280 200,000
B Evident 36,000 41,256 57,000
C Possible 19,000 21,774 27,000
PDO Property Damage Only 2,000 2,292 3,900
 
In addition to accident reductions, other possible benefits or costs of implementing safety 
programs are changes in delays at intersections, resulting in effective increases or reductions 
in road capacity. These changes affect travel times for roadway users and should be counted 
properly in benefit/cost ratios. While reducing speed limits may increase safety but reduce 
capacity, there are some safety efforts that have also been shown to increase capacity. For 
example, efficiently programming traffic control devices in a network can yield benefits in 
reduced delays, and reduced fuel use, as well as increased safety (Skabardonis, 2001). 

Another important consideration is that very few safety improvement projects are undertaken 
randomly, as would be required for an unbiased estimate of the effects. Most often, safety 
efforts are directed toward intersections or roadways that have the highest accident rates in a 
given time period. Ceteris paribus, an intersection with an unusually high accident rate in one 
period, is likely to have a lower (more average) rate in the next. This phenomenon is 
sometimes called the “regression to the mean effect.” Thus, the effects of a safety program 
targeted in this way may be overstated. Kulmala (1994) found that accidents declined 
approximately 20 percent due to regression to the mean effects, independent of any safety 
measures implemented. If ignored, regression to the mean effects can easily mislead 
researchers to inappropriately attribute crash reductions to an ineffective safety program.  

In addition, the quality of the data used in safety studies must be ascertained. One often 
overlooked aspect of accident data is censoring. One must realize that not all accidents are 
reported, and state laws differ on reporting requirements. In North Carolina, the crash-
reporting threshold is currently $1000. That is, if a police officer is called to the scene of an 
accident, the officer is not required to make a report of the details of the accident unless he or 
                                                 
3 Updated using GDP Implicit Price Deflator from 01, 2002. 
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she is certain that the damage is in excess of $1000. Therefore, many accidents are never 
entered into a crash database and may affect the results of accident studies if ignored. The 
research related to this subject has been sparse. Zegeer et al. (1998) studied the differences in 
various types of accidents that would be reported under three different types of reporting 
thresholds: traditional (value), tow away, and injury. They found that using higher thresholds 
(tow away versus traditional, for example) tends to seriously underreport certain types of 
crashes. One would expect that the traditional thresholds lead to similar types of bias in 
accident reporting.  

2.2. Red Light Running 
While installing red lights at intersections can often improve safety and traffic flow, such 
intersections are often studied because they are the scenes of many devastating crashes. 
Retting et al. (1995) found that running traffic control devices were the primary cause of 22 
percent of all crashes and 27 percent of injury crashes. They also found that crashes involving 
red- light running are more likely to involve an injury, occurring in 45 percent of these 
crashes.  

Given the danger associated with running red lights, a question one asks is, “Why would an 
individual do this?” Wissinger et al. (2000) discovered that the main reason people purposely 
run red lights is to minimize delay because they are in a hurry. In addition, Wissinger found 
that many people do not properly understand the law regarding red light running, which 
varies by state. In North Carolina, the law states: 

“Vehicles facing a red light controlling traffic passing straight through an 
intersection from a steady or strobe beam stoplight shall not enter the intersection 
while the steady or strobe beam stoplight is emitting a red light controlling traffic 
passing straight through an intersection…” (NCGS 20-158 (b) (2)). 

Because many intersections contain “stop bars,” many motorists believe that their vehicle 
must pass the stop bar before the light turns red. However, as the law above states, it is the 
intersection, i.e. the curb, that is important for making a legal maneuver. Thus, vehicles may 
inadvertently violate the letter of the law by stopping on a stop bar that extends beyond a 
curb.  

In addition, some drivers may run a red light because of poor signal timing. At some 
intersections, it has been found that so-called “dilemma zones” exist. A dilemma zone exists 
when a reasonable and prudent driver can neither stop the vehicle in time nor enter the 
intersection before the onset of a red light. Setting amber times too low, based on speed, 
visibility, and grade of the intersection, causes dilemma zones. For example, a vehicle 250 
feet from an intersection may require 300 feet to stop and 4.5 seconds to reach the 
intersection. If the amber time is less than 4.5 seconds (plus some increment for reaction 
time), the driver has no ability to stop, and will run the red light. In these cases, a simple 
solution to improve intersection safety is to increase the amber time.  
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However, when we want to increase safety at intersections with red lights, it is important to 
understand the various types of drivers, circumstances, and causes of red light running. 
Milazzo, Hummer, and Prothe (2001) carefully classified red light running in several ways. 
First, they characterized drivers into four types: 

1) Reasonable/Prudent: an attentive, cautious driver 
2) Inattentive: may be distracted by children in the car, cell phone, or other reasons 
3) Reckless: does not show proper regard for their own or others’ safety 
4) Mistaken (Judgment Error) 

They then characterized the reasons why someone may or may not stop: 

1) Enforcement measures: risk of receiving a ticket 
2) Risk of crash 
3) Time savings 
 

Finally, for drivers who enter an intersection, Milazzo et al. (2001) classify each driver 
by answering the following questions about the maneuver: 
 

1) Is it safe? 
2) Is it legal? 
3) Is it intentional? 

 

The answers to these questions determine the type of behavior exhibited by the driver, why a 
maneuver is performed, and what can be done to increase safety. Breaking down drivers in 
this way creates reasonable pictures of different types of drivers, and this information can be 
used to predict the effect of safety improvements on them. For example, an inattentive driver 
may not avoid running a red light because of increased enforcement measures, but may 
respond to more visible signage.  

Porter and Berry (1999) used surveys to form a profile of those drivers who run red lights, 
identifying a red light runner as a younger person who is driving alone and often in a hurry. 
While this profile is at first appealing, it is certainly not wholly inclusive of the 56 percent of 
respondents to the survey who admitted to running red lights, and one in five who admitted 
running at least one out of the last 10 red lights encountered prior to the survey. When asked 
why drivers stop for a red light, 69.3 percent responded because it is safer, compared to only 
15.4 percent who stop because it is illegal. 

While driver characteristics are undoubtedly important, the characteristics of the intersections 
themselves can significantly impact red light running and the resulting crashes. Stimpson, 
Zador, and Tarnoff (1980) and other research has found that simply re-timing stoplights 
significantly increases safety. They found that increasing the amber time by approximately 
30 percent reduces the number of vehicles that enter an intersection in conflict4 by 90 
percent. Because signal-timing changes are very inexpensive and have potential for large 
safety benefits, it could be argued that it should be the first issue addressed concerning red 
light running. Retting, Chapline, and Williams (2002) found that 40 out of 51 sites examined 
in New York State required timing adjustments. They found that doing so reduced crashes at 
these intersections by approximately 5 percent. Furthermore, Retting et al. (2002) found that 
                                                 
4 Vehicles that spent a minimum of 0.2 seconds in an intersection after the onset of red.  
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traffic volume, number of lanes of traffic, and the use of fully actuated signals were all 
associated with higher number of accidents. They also found that fully actuated signals may 
increase accidents because they are often located in suburban, non-networked, high-speed 
locations. 

Thus, many studies have investigated different aspects of who runs red lights and why, the 
associated danger, and possible intersection characteristics that can affect the magnitude of 
the danger. However, much work is still to be done to evaluate the myriad of options for 
continuing improvement of intersection safety. Proper timing of signals or the removal of 
unwarranted signals (Retting, Williams, and Greene, 1998) can be considered a low-cost 
approach, while increasing the fines and other sanctions against drivers who run red lights 
can be effective. Increased enforcement, coupled with education campaigns, may also help to 
mitigate the danger. However, traditional law enforcement methods can actually cause 
accidents at intersections. For example, if an officer observes a vehicle running a red light, 
issuing a citation often requires the officer to follow the offender through the light, creating 
additional danger to motorists. One solution is to mount a so-called “rat box” on the backside 
of traffic signals. These rat boxes contain light emitting diodes, which activate when the 
signal turns red. This type of system allows an officer stationed downstream from the signal 
to more safely observe and cite offenders. 

Recently, in many municipalities, interest has been increasing in automated enforcement 
mechanisms, particularly for red light enforcement. We will describe this technology and the 
existing research in the next section. 

2.3. Red Light Cameras5 and Previous Studies 
A red light camera (RLC) system typically employs electromagnetic loops and a pole- 
mounted camera (either 35 millimeter or digital) that are tied into the timing system of a 
traffic signal. Because the camera’s position is fixed, only one direction of traffic flow is 
monitored at an intersection. Once the signal changes to red, the system is generally 
programmed with a small “enforcement tolerance” of 0.1 to 0.3 seconds, after which any 
vehicle crossing the loops will trigger the camera unit to take two photographs. To establish 
evidence of a violation, the first photograph captures the vehicle as it enters the intersection, 
and the second captures the vehicle’s progress into the intersection. The photographs must be 
of sufficient resolution to allow identification of the license plate of the vehicle. 

Typically, these photographs are reviewed by a police official to screen out those taken of 
funeral processions, emergency vehicles, etc. In Greensboro only 40.3 percent of the “events” 
captured by RLCs during the first year of operation resulted in tickets being issued. 

RLCs are an attractive option for municipalities for several reasons. Normally, an outside 
contractor who offers to install and operate the system with no up-front cost to the local 
government approaches municipalities. These contractors earn a commission on each ticket 
issued, with the remainder going to the municipality. In addition to being a revenue source, 
the municipalities see increased safety as a benefit of RLCs. 

Thus far, the safety benefits of RLC programs have not been convincingly shown. Although 
several studies have shown that RLCs usually reduce the rate of violations (Retting et al. 
1999a, Retting et al. 1999b), very little evidence exists that confirms that RLCs reduce 
                                                 
5 A good overview of RLC technology and implementation in North Carolina is found in Milazzo, 
Hummer, and Prothe (2001). For the sake of brevity, we only outline the major ideas here. 
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accident rates. Many studies and reports6 have consistently shown that in short periods after 
RLC programs are implemented, violation rates drop dramatically. Various programs have 
seen reductions in violations of between 20 percent and 83 percent as drivers become 
accustomed to the presence of the cameras and are educated by the signs and public 
information campaigns that usually accompany RLC programs. In Greensboro, the violation 
rate declined by roughly 35 percent within several months. The few known studies that find 
reductions in accident rates in the U.S. were conducted using data from Oxnard, CA (Retting 
and Kyrychenko, 2002), Fairfax, VA (Retting et al. 1999a), and Charlotte, NC (Milazzo et 
al., 2001). Most of these studies compare crash totals for a period before and after the 
introduction of RLCs. While the number of crashes at intersections with RLCs declined, 
results varied drastically based on the type of crash. Overall, crashes went down 7 percent in 
Oxnard, and 8 percent in Charlotte. However, front-into-side crashes reportedly went down 
by 32 percent in Oxnard. This fact highlights the importance of a detailed investigation of 
possible crash reductions by type and severity. 

A ten-year study in Australia (Andreassen, 1995), five years both before and after the 
introduction of RLCs, found no overall decrease in accidents from RLCs. This study found 
evidence of the regression to the mean effect, with low accident sites experiencing more 
accidents and higher accident sites seeing a decrease. When compared to intersections 
without RLCs, a small reduction in pedestrian accidents was observed after RLCs were 
introduced. Offsetting this reduction in accidents was a significant increase in front-into-side 
crashes and in rear-end collisions (approximately double). 

It has been suggested that reductions in violations translate into increased safety. As 
introduced previously, Milazzo et al. (2001) point out that there are many different types of 
red light runners and red light running. To simplify, we can think of two broad categories of 
red light running, low risk and high risk. Milazzo et al. reviewed 34 photographs of crashes 
captured by red light cameras and found that all of the crashes caused by red light running 
involved vehicles entering the intersection more than 1.0 second after the onset of red, and 
the large majority entered the intersection more than 3.0 seconds after the onset of red. Thus, 
it appears that those who run red lights soon after the onset of red and before conflicting 
traffic has entered the intersection pose little risk of causing an accident.7 Though this type of 
red light running is clearly illegal, one may argue that a reasonable, prudent, and attentive 
driver may occasionally risk entering an intersection in this short-time window. Those drivers 
who enter an intersection more than one second after the onset of red can broadly be labeled 
as reckless, inattentive, or mistaken.  

Winn (1995) found that approximately 70 percent of RLC violations occur between 0 and 1 
second after the onset of red and approximately 29 percent between 1 and 5 seconds. After 
the RLC program went into effect, the number of violations occurring between 0 and 5 
seconds dropped by nearly two thirds. The most dangerous violations, those occurring more 
than 5 seconds into the red phase, did not drop in the three-year period after the program 
began issuing tickets. Thus, we see the potential problem in the connection between RLCs 
and safety. The reckless or inattentive (and most dangerous) red light runners seem to 
respond least to an RLC program. 

                                                 
6 See Maccubbin, Staples and Salwin, 2001 for an extensive list. 
7 In our dataset, the average “all red clearance time” before opposing traffic sees a green signal is 1.55 
seconds. 
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However, there are many anecdotal reports and several formal studies that demonstrate 
decreases in accidents after RLC programs are implemented. These studies give estimates of 
crash reductions ranging from 0 percent to 70 percent for angle crashes and changes in rear 
end collisions ranging from a decrease of 22 percent to an increase of 50 percent.8 The large 
range of values seen in these reports raises several questions about the results: 

1) Are these numbers controlling for other safety improvements, programs, and 
changes in automobile safety features that occur along with RLC programs? 

2) Are there some intersection characteristics that may influence the effectiveness of 
RLCs in increasing safety? 

3) Are these changes biased because of regression to the mean effects? 
4) Are the effects of the cameras limited to monitored intersections or are there some 

spillovers? 
Previous reviews of the literature on RLCs and safety have been done. McFadden and 
McGee (1999) performed a “Synthesis and Evaluation of Red Light Running Enforcement 
Programs in the United States.” While they concluded that RLCs probably decrease 
violations between 20 and 60 percent, they suggested “additional crash data . . . to validate 
and quantify the RLR automated enforcement programs implication on crashes” (p. 27). Part 
of their concern was that “simple comparisons are not statistically rigorous to conclude that 
the RLR program will result in crash reduction immediately or in the long run” (p. 27). 

More recently, Maccubbin, Staples, and Salwin (2001) performed an extensive review of the 
current evidence. They write: 

 

Each of the existing independent analysis makes an attempt to assess the 
long-term impacts of a system that is affected by a variety of external 
influences that can also impact traffic safety. This is a characteristic of 
traffic safety impact studies that is probably difficult to overcome. While 
a long-term study may provide a better indication of any lasting impact 
of the systems on intersection safety, this longer time frame also allows a 
greater opportunity for other, necessary, improvements that can also 
impact safety, such as intersection and pedestrian safety improvements. 
The result is that the safety impact of the camera systems remains 
unclear. 

Though it is impossible to perform a perfect evaluation of the impact of RLCs, the existing 
research is lacking in many fundamental ways. Zaidel (2002) uses meta-analysis of several 
studies to suggest a “best estimate” of the effects of RLCs of an 11 percent reduction in 
accidents. However, he suggests that most of these studies fail to control for changes in 
design standards, biased selection of sites, and other safety improvements. Studies that do 
attempt to control for these types of changes (Andreassen, 1995; Kent et al., 1995) have 
found that RLCs provide no significant safety improvement. Flannery and Maccubbin (2002) 
also point to a lack of high-quality studies performed in the U.S., finding only two studies 
which used data on individual intersections along with usable crash data and traffic-count 
data.  

                                                 
8 See Maccubbin, Staples, and Salwin (2001) for an extensive summary of these estimates. 
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One of the most frequently cited papers that finds a decrease in crashes associated with an 
RLC program is by Retting and Kyrychenko (2002). This study uses 29 months of data 
before and after the implementation of 11 red light cameras in Oxnard, California. The study 
claims to use 16 observations and 12 dummy explanatory variables. Because only 16 
observations were used, the authors provided a list of the data in the paper. This is 
reproduced in Table 2.2 below. The table of results from Retting and Kyrychenko’s paper is 
reproduced in Table 2.3. 

Table 2.2: Total Crashes Before and After Enforcement 

City Type of 
Intersection Before After Percent Change 

Bakersfield Non-signalized 760 753 -0.9 
Bakersfield Signalized 771 739 -4.2 

San Bernardino Non-signalized 1220 1283 5.2 
San Bernardino Signalized 1,324 1400 5.7 
Santa Barbara Non-signalized 712 622 -12.6 
Santa Barbara Signalized 488 438 -10.2 

Oxnard Non-signalized 994 1,011 1.7 
Oxnard Signalized 1,322 1,250 -5.4 

 
 
Table 2.3: Estimated Effects on Total Crashes 

Effect 
Degrees of 
Freedom 

Mean 
Square F-value p-value Estimate 

Percent 
Reduction 

Camera 1 0.0013308 11.33 0.0281 -0.07296 7 
Error 4 0.00011741     

There are several serious problems with this analysis. Firstly, the fact that only aggregate data 
are used for four towns, ignoring such important variables as traffic counts and the numbers 
of the various types of intersections involved, is troubling. The study period was from 
January 1995 through December 1999. During the 1990s the four towns in the study grew at 
very different rates, seeing population changes from 7.89 percent (Santa Barbara) to 41.32 
percent (Bakersfield). At a minimum, adjustments to the crude accident counts should have 
been made for these large variations in population growth.  

Secondly, if the analysis is performed as Retting and Kyrychenko described (see appendix), 
16 observations and 12 dummy variables leave 3 error degrees of freedom. Replicating the 
analysis reportedly done, one should end up with the following: 

Table 2.4: Estimated Effects on Total Crashes: Corrected 

Effect 
Degrees of 
Freedom 

Mean 
Square F-value p-value Estimate 

Percent 
Reduction 

Camera 1 0.0013308 8.59 0.0610 -0.07296 7 
Error 3 0.00015493     

 
It is striking how the Estimate and Mean Square are identical to those reported by Retting 
and Kyrychenko; however, the degrees of freedom and p-value have changed.9  
                                                 
9 After sending emails to both Retting and Kyrychenko about this matter, we were told that they didn’t 
remember why there were 4 error degrees of freedom, but that they probably left out one of the dummy 
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Third, the analysis performed does not do what the authors claim. The authors believed that 
they were using the three cities in California other than Oxnard as controls in an analysis of 
variance. Using the 12 dummy variables in the manner they described reduces the estimate to 
a trivial calculation. First, the crash counts in Table 2.2 were converted to natural logarithms. 
As shown in the appendix, the “generalized linear regression” estimate of -.07296 is simply 
calculated as follows (where S and NS are signalized and non-signalized): 

[ln( ) ln( )] [ln( ) ln( ]
[7.13090 7.18690 ] [ 6.90174 6.91870   ]

0.05600 0.01696    0.07296

SAFT SBEF NSBEF NSAFTEstimate OXN OXN OXN OXN= − + −
= − + −
= − − = −

 

 
Recalling that taking the difference between two natural logarithms is equivalent to 
calculating the percentage difference between two numbers, all that is being done is to 
subtract the 1.7% from the -5.4% in Table 2.3. The numbers used are slightly different 
because instead of using the starting number as the base for the percentage difference, the 
natural logarithm method uses the midpoint as the base. 
The overall implication is that the effect attributed to the red light cameras by Retting and 
Kyrychenko is only a comparison of the accident growth rate between signalized and non-
signalized intersections in Oxnard, CA. The other data does not act as a control, nor does it 
add any information to this model. This lack of control is especially critical for this study 
done in California because several important policy changes were implemented in the state 
during the period of the study. Most importantly, the fine for red light violations was 
increased from $104 to $270. In addition, the graduated licensing program for minors was 
expanded, significantly limiting the minors’ driving privileges. Because of the way this 
model was constructed, the p-value calculated has no statistical meaning, and the estimate 
cannot be described as an effect of red light cameras.  

                                                                                                                                                 
variables. Running 12 regressions, leaving one dummy variable out each time suggested that this was not 
the case.  
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3. Data Collection  
To successfully analyze how red light cameras interact with other roadway characteristics to 
impact safety, three different types of data were collected. The first type concerned 
information about the physical properties of each signalized intersection in Greensboro, the 
second involved the cameras themselves, and the third concerned accidents at signalized 
intersections. The data and collection methods are described in the following sections. 

3.1.  Intersections 
The scope of the data collection was limited to intersections with stoplights. In addition, we 
eliminated stoplights that were located on highway exit ramps to obtain a more homogeneous 
data set. These data were collected in collaboration with the Greensboro Department of 
Transportation (GDOT). Initial data collection efforts showed that the GDOT did not have a 
formal data set describing the characteristics of intersections. Thus, it became necessary to 
collect as much data as possible from technical drawings of these intersections. It was 
discovered that some of the signalized intersections from the list of 413 provided by the 
Engineering Department of GDOT had no drawings and many drawings were incomplete. 
Furthermore, some of the data provided by the Traffic Signals Maintenance division were 
inconsistent with those from the Engineering Department, thus requiring a large amount of 
time and effort for data collection, reconciliation, and cleaning. Site visits were made to some 
intersections to ensure completeness and accuracy of the data, and the knowledge of many 
GDOT officials was used to fill in missing values. 

The collected data set consists of descriptive features of 303 intersections. These features 
include amber timing for each road, all red timing, posted speed limits, and number of lanes 
on each road. Others are the number of left turn lanes on each road, the presence of dedicated 
right turn lanes, sidewalks, one-way or two-way street, “Left Turn Must Yield on Green” 
signs, “No Right Turn on Red” signs, and “No Left Turn” signs. Other characteristics on 
which data were collected are the presence of solid medians at intersections, left turn arrow, 
and pedestrian crossing signals. 

In addition, the average daily traffic volume (ADV) at each intersection was provided by 
GDOT for the years 1990-2003. Ideally, measurements of ADV would be available for each 
intersection monthly. However, the GDOT collects this data for each intersection on a 
rotating basis, measuring each intersection approximately every two to three years. 
Therefore, a decision had to be made as to its treatment because the most recent ADV 
measurements were from 1998-2003, depending on the intersection. Upon examination, the 
data did not exhibit an obvious trend over time, especially if one focused only on the five 
years relevant to this study. Rather, the measurements appeared to be random observations of 
a stationary series. A possible explanation is that the various recorded traffic volumes were 
measured during different times of the year or days of the week. To even out the randomness 
in the recorded traffic volumes, the average ADV over all available observations for each 
intersection is used in the analysis. 

The final descriptive data concerns the location of the intersection. GDOT’s GIS Department 
assisted in automatically matching approximately 80 percent of the intersections using 
ARCGIS. The rest were matched manually using MapInfo.  
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3.2.  Red Light Cameras 
We obtained the locations of Greensboro’s red light cameras, dates of operation, and the 
number of tickets issued in each month for each camera. Here, a distinction between the 
number of “events” at a red light camera and the number of tickets issued is important. Many 
events trigger the camera to take a snapshot, but not all events result in a ticket being issued. 
In many cases, a person reviewing the snapshot determines that a violation did not occur. 
Other times a violation may have occurred, but a ticket was not issued because the license 
plate of the vehicle was obscured or could not be read, or the vehicle was in a funeral 
procession. This has resulted in a 40.3 percent red light ticket issuance rate in Greensboro. 

The appeals process is also noteworthy. In Greensboro, five lawyers take turns hearing 
appeals from ticketed drivers and are compensated $37.50 per appeal, regardless the 
outcome. Any compensation made comes out of the city’s $15 share of the $50 ticket. In the 
first 16 months of the red light camera program, 1,244 tickets were appealed and 
approximately 24 percent were successful (Fuchs, 2002).  

Since the data on accidents are grouped by month, we constructed a dummy variable for each 
intersection to show the presence or absence of a red light camera each month. The analysis 
spans 57 continuous months; the first red light cameras were operational beginning in the 27th 
month. Several cameras became operational close to the end of the months they were 
installed. For these cameras, their initial dates of operation were pushed to the following 
month. 

3.3.  Accident Data 
In North Carolina it is the duty of the Safety Information Management and Support Section 
of the North Carolina Department of Transportation (NCDOT) to collect data on accidents. 
They are responsible for acquiring and compiling accident data from police reports and 
entering them into a computerized database called the “Traffic Engineering Accident 
Analysis System” (TEAAS). This is a modern database created in 1999 using Java for web 
accessibility, Oracle for database functions, and CORBA to allow many different platforms 
to access it. A limitation of this data is that a police report is only filed when an accident is 
estimated to have involved more than $1,000 in damages or an injury (See attachment 1, 
North Carolina Accident Report). This monetary limit may cause problems with censoring 
some types of accidents more than others. For example, angle accidents may normally cost 
more than $1,000, while many low-speed rear-end accidents may cost less than $1,000 and 
are unreported. Figure 1 is a histogram of the total damages estimated by the police report for 
the accidents in our study. Note the very small percentage of accidents reported that have low 
estimated damage amounts. The labels on the x-axis are to be interpreted as “less than or 
equal to this amount, but greater than the previous category.” There were 107 accidents with 
recorded damages of zero. Upon closer inspection of these records, it appears that sometimes 
some values in the police report are left blank; therefore, it is likely that many of these zeros 
are actually the result of missing values. 
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Figure 1: Damage Histogram 
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Table 3.1: Descriptive Statistics: Type of Crash vs. Severity 

         Severity Index  Crash Type 
Fatal A INJ B INJ C INJ  PDO UNK Total 

ANGLE 8 38 395 1350 1928 6 3725 
REAR END, SLOW OR STOP -- 6 106 1494 1780 4 3390 
LEFT TURN, SAME ROADWAY 2 15 118 393 583 3 1114 
SIDESWIPE, SAME DIRECTION -- -- 14 77 520 7 618 
LEFT TURN, DIFFERENT ROADWAYS 1 2 36 128 216 -- 383 
FIXED OBJECT 1 5 38 72 160 21 297 
HEAD ON 2 2 31 55 56 2 148 
REAR END, TURN -- -- 7 46 79 1 133 
BACKING UP -- -- 1 10 106 -- 117 
RIGHT TURN, SAME ROADWAY -- -- 2 21 88 -- 111 
RIGHT TURN, DIFFERENT ROADWAYS -- -- 4 22 66 -- 92 
PEDESTRIAN 4 10 34 33 7 -- 88 
SIDESWIPE,OPPOSITE DIRECTION -- -- 7 20 55 1 83 
RAN OFF ROAD - RIGHT -- -- 11 22 44 1 78 
PARKED MOTOR VEHICLE -- -- 2 10 36 11 59 
OVERTURN/ROLLOVER 1 -- 16 15 10 1 43 
PEDALCYCLIST -- 5 17 17 -- -- 39 
RAN OFF ROAD - LEFT -- 1 5 10 20 3 39 
MOVABLE OBJECT -- -- 2 7 20 4 33 
UNKNOWN -- -- 1 14 17 1 33 
ANIMAL -- -- 2 4 24 -- 30 
OTHER COLLISION WITH VEHICLE -- -- 6 8 16 -- 30 
RAN OFF ROAD - STRAIGHT -- -- 1 8 11 -- 20 
OTHER NON-COLLISION -- -- 7 8 2 -- 17 
JACKKNIFE -- -- -- -- 1 -- 1 
Grand Total 19 84 863 3844 5845 66 10721 
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Table 3.2: Descriptive Statistics 

Descriptive Statistics: 303 intersections for 57 months = 17,271 observations 
Description Variable Mean Std.Dev. Minimum Maximum

Month code MONTH 29.000 16.452 1 57
Presence of RLC RLCPRES 0.029 0.168 0 1
Number of left turn lanes TOTLTL 1.640 0.859 0 4
Number of other traffic lanes TOTLN 6.490 2.231 2 13
Presence of right turn lane DEDRTL 0.446 0.497 0 1
Sidewalks SWLK 0.432 0.495 0 1
Solid median SLDMED 0.175 0.380 0 1
Pedestrian crossing signal PEDSIG 0.257 0.437 0 1
Inches of snow SNOW  0.409 1.477 0 8.2
Inches of Liquid Precipitation PRECIP 3.645 2.226 0 9.98
All red time, street 1 ST1RED 1.550 0.552 0 5
All red time, street 2 ST2RED 1.542 0.525 0 5
0=1 way, 1=two way street ST1FLOW 0.911 0.285 0 1
0=1 way, 1=two way street ST2FLOW 0.861 0.346 0 1
Amber: actual-recommended AMBD1 0.569 0.454 -1.555 2.475
Amber: actual-recommended AMBD2 0.567 0.451 -1.015 2.175
Posted speed limit, street1 ST1SP 34.669 5.434 20 55
Posted speed limit, street2 ST2SP 34.868 5.681 20 55
Average daily volume ADV  27952 12753 6774 69233
Natural Log of ADV LOG(ADV) 10.134 0.465 8.821 11.145
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The data are primarily contained in two types of files: the event level data contains one 
record for each accident, including location, number of vehicles involved, numbers of 
injuries by severity, and other data, and the unit level data contains one record for each 
vehicle involved in each accident. Each record details the type of vehicle, damage estimates, 
injury levels, indications of use of alcohol or seatbelts, and many other variables. We 
performed a query of this database, pulling all records that met the following conditions: 
First, the accidents must have occurred between 1/01/99 and 9/30/03.10 This gives at least 26 
months of “before” data and 22-31 months of “after” data.11 Second, the accident must have 
occurred within 100 feet of the center of an intersection. The rationale for this limit is to 
avoid the influences of traffic from minor roads entering the main road. The last condition is 
that the accident must have occurred in Greensboro, North Carolina.  

This query produced approximately 30,000 events with approximately 60,000 vehicles 
involved. However, only the records matching to one of the 303 intersections in this study 
were used. Records from the accident database were carefully checked for misspellings (e.g., 
Creekridge/Creek Ridge/Creekrige) or the use of alternate road names (e.g., Bryan 
Boulevard/Joseph M. Bryan Boulevard/Bryan Ave.). In the final data, 10,721 accidents were 
identified over the 57 months of the study at the 303 intersections. Since a balanced panel 
data set is used, the total observations are 17,271. 

3.4.  Other Data 
To account for differences in weather, we used snowfall and total liquid precipitation 
amounts, as measured at the Piedmont Triad International Airport in Greensboro (NOAA     
2004). Furthermore, the actual amber timing of each signal was compared to a recommended 
minimum amber timing based on the speed on the roadway. The difference between the 
actual and the recommended timing is used in the study. As discussed in Milazzo, Hummer, 
and Prothe (2001), the minimum safe amber timing is given by: 

a
v

tY o

2
+≥  

In this equation, Y is the minimum yellow time, t is the reaction time (typically assumed to be 
1.0 second), ov  is the initial velocity of the vehicle in feet per second, and a  is the 
deceleration rate, typically assumed to be 10 feet/sec2. Using this formula, the difference 
between the actual and calculated amber time was calculated. A positive value indicates that 
an intersection has a longer amber time than the minimum recommended, which has been 
shown in several studies to reduce accidents (for example, Retting, Chapline, and Williams 
(2000)). 

Tables 3.1 and 3.2 show the summary statistics for the data. In Table 3.1, a cross tabulation 
of the accident events is presented by type and severity. In the data analysis, we will examine 
total accidents both by type and severity. To avoid problems that occur when studying 
extremely rare events, we only study the five most frequently occurring types of accidents 
individually. These are angle crashes, rear ending a slowing or stopped vehicle, left turning 
vehicle struck by a second vehicle on the same roadway, left turning vehicle struck by a 
second vehicle on a different roadway, and a sideswipe by a vehicle on the same roadway. 
All other types of accidents are combined into the category “Other.” 
                                                 
10 The latest available at the writing of this report. 
11 Because the cameras were installed between 27 and 35 months after January 1999. 
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Similarly, we investigate the factors influencing the severity of accidents. Again, because 
fatalities and severe injuries (Type A) occurred so rarely in the data set, they are grouped 
together with evident, non-disabling injuries (Type B) into a category called “Severe.” In 
addition, we examine possible injuries (Type C) and accidents with no injuries (Property 
Damage Only) separately for comparison. Table 3.2 presents descriptive statistics for the 
explanatory variables in the study. Many characteristics of each intersection were recorded, 
as described above in Section 3.1. 
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4. Empirical Model 
Conceptually, the design of this analysis is an expanded before/after model. A basic version 
of such a model compares the rate of accidents before the installation of a red light camera 
with the rate after installation. Over the data period of 57 months, 18 red light cameras were 
installed at intersections between 27 and 35 months into the time series. Examining only the 
monthly rates of accidents at these 18 intersections by severity before and after the 
installation of RLCs generated the descriptive statistics in Table 4.1.  

The entries in the table represent the number of crashes per 10 month period. Thus, for 
camera number 01, before the red light camera installation there were approximately 23.46 
accidents every 10 months. After the RLC was installed, there were approximately 24.83, a 
5.8 percent increase. The changes in accident patterns varied dramatically, ranging from a 
30.8 percent decrease to a 68.8 percent increase. On average, the results show a 2.5% 
decrease in accident rates. 

 

Table 4.1: Before/After Statistics for 18 RLC Sites 
RLC Sites: No RLC Normalized/10 months RLC Sites: With RLC Normalized/10 months 

ID # FTL AINJ BINJ CINJ PDO Total FTL AINJ BINJ CINJ PDO Total %Chg 
01 -- -- 2.31 10.00 11.15 23.46 -- 0.34 1.72 9.31 13.45 24.83 5.8% 
02 -- 0.38 1.92 9.62 6.54 18.46 -- -- 0.34 9.31 8.97 18.62 0.9% 
03 -- -- 2.69 1.92 7.31 11.92 0.34 -- 1.72 2.76 7.24 12.07 1.2% 
04 -- 0.38 1.15 4.23 10.00 15.77 -- 0.34 1.38 9.31 10.00 21.03 33.4% 
05 -- -- 3.21 5.36 6.79 15.36 -- 0.37 0.37 8.52 16.67 25.93 68.8% 
06 -- -- 1.85 7.41 7.41 17.04 -- 0.36 0.36 8.21 9.29 18.21 6.9% 
07 -- 0.37 1.11 6.30 1.85 9.63 -- -- 1.07 5.00 2.50 8.57 -11.0%
08 -- -- 0.36 6.79 10.36 17.50 -- -- 1.85 4.07 7.41 13.33 -23.8%
09 -- -- 0.33 4.33 9.33 14.00 -- -- -- 1.60 10.00 11.60 -17.1%
10 -- -- -- 1.03 1.03 2.07 -- -- -- 0.38 1.15 1.54 -25.6%
11 -- -- 2.07 6.55 12.07 20.69 -- -- 2.31 5.77 6.92 15.38 -25.6%
12 -- -- 0.67 5.33 6.33 12.33 -- -- 1.20 4.00 7.60 12.80 3.8% 
13 -- 0.32 0.65 4.52 6.13 11.61 -- -- 0.83 5.00 10.00 15.83 36.3% 
14 -- -- 0.86 9.71 20.29 30.86 -- -- -- 6.00 19.00 25.00 -19.0%
15 -- 0.30 1.52 4.24 5.76 11.82 -- -- 0.45 3.18 4.55 8.18 -30.8%
16 -- -- 1.52 3.64 5.76 10.91 -- 0.45 0.45 3.64 6.82 11.36 4.2% 
17 -- -- 2.50 5.31 10.63 18.44 -- -- 0.43 13.91 15.65 30.00 62.7% 
18 -- 0.32 1.61 7.74 13.87 23.55 -- -- 1.25 15.00 12.92 29.17 23.9% 

Total -- 0.11 1.44 5.78 8.63 15.99 0.02 0.10 0.84 5.95 8.66 15.59 -2.5% 

 

If one were to use the naïve approach shown in table 4.1, one would reasonably conclude that 
there has been a very small drop in accident rates that is possibly due to random fluctuation 
rather than the red light cameras.  
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Table 4.2: RLC Sites Before and After the RLC Program: Common Types of Accidents 
  First 29 months of data Last 28 months of data 

CRASH TYPE FTL AINJ BINJ CINJ PDO Total FTL AINJ BINJ CINJ PDO Total 
REAR END, SLOW OR STOP -- 1 17 152 188 358 -- 1 6 172 201 380 
ANGLE -- 2 34 78 115 229 -- 2 15 82 124 223 
LEFT TURN, SAME ROADWAY -- 1 7 29 44 81 -- -- 5 16 26 47 
SIDESWIPE, SAME DIRECTION -- -- 2 4 37 43 -- -- -- 10 37 47 
LEFT TURN, DIFFERENT ROADWAYS -- -- 6 13 15 34 -- -- 2 1 3 6 
REAR END, TURN -- -- -- 5 10 15 -- -- 1 1 11 13 
TOTAL (including omitted categories) -- 6 78 302 454 840 1 5 40 299 432 777

 

In Table 4.2 we show a simple comparison of how accidents varied between the first and 
second halves of the study (first 29 months vs. last 28 months). Because the RLCs began 
operation in the 27th month, the division is not perfectly accurate, but instructional 
nonetheless. The column totals are greater than the sum of the listed numbers, as they include 
other types of accidents not listed in the table (e.g., head on). Similar to other studies, we see 
an increase in rear end accidents. However, we see a large percentage decrease in both types 
of left turning accidents. Interestingly, we see no real change in angle accidents (229 vs. 
223); these accidents are often cited as the type that should decrease most when RLCs are 
installed. Adjusting for the fact that the first period includes 29 months and the second 28, we 
actually see a small increase in angle accidents (7.90 per month to 7.96). 

Even so, this simple approach is improper because it ignores other important information that 
might mask the true effects. For example, this approach ignores a possible time trend in 
accidents associated with unobserved factors (e.g., police enforcement intensity, roadway 
improvements, auto safety features, and precipitation levels). At a minimum, one must 
determine how the patterns of accidents are changing at Non-RLC sites (using them as 
controls). As a thought experiment, imagine two identical intersections, A and B. Suppose 
that we place a red light camera at intersection B, and accidents decrease by 10 percent. 
Should we conclude that the red light camera decreased accidents? Not necessarily, 
especially if accidents at intersection A also decreased by 10 percent. This points to a 
possible outside influence that is decreasing accident rates (e.g., the prevalence of antilock 
brakes on cars).  

If accident rates at intersection A went down by 25 percent, then we might suspect that the 
red light camera is increasing the accident rate that would have occurred otherwise at B. This 
becomes especially true if we see a similar comparison at many RLC sites and many control 
sites. In Table 4.3 we show the changes in accidents happening during the same period at the 
other 285 sites in the study. For total accidents and for each type (except Sideswipe) we see a 
decrease in accidents at the control sites as well. These decreases are also generally a larger 
percentage decrease than seen at the RLC sites. However, similar to the RLC sites, on a 
monthly basis we do see a small increase in angle crashes (56.62 to 58.04). 

Table 4.3: Control Sites Not Chosen for RLC Installation 
  First 29 months of data Last 28 months of data 

CRASH TYPE FTL AINJ BINJ CINJ PDO Total FTL AINJ BINJ CINJ PDO Total 
REAR END, SLOW OR STOP -- 2 41 600 728 1371 -- 2 42 570 663 1277 
ANGLE 4 22 178 581 857 1642 4 12 168 609 832 1625 
LEFT TURN, SAME ROADWAY 2 9 69 231 338 649 -- 5 37 117 175 334 
SIDESWIPE, SAME DIRECTION -- -- 8 33 211 252 -- -- 4 30 235 269 
LEFT TURN, DIFFERENT ROADWAYS 1 2 19 76 131 229 -- -- 9 38 67 114 
REAR END, TURN -- -- 1 22 35 58 -- -- 5 18 23 46 
TOTAL (including omitted categories) 10 46 406 1705 2660 4827 8 27 339 1538 2299 4211 
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Some may automatically credit the decrease in accidents at the control sites to the so-called 
“spillover effect”. Evidence of a spillover effect must be shown by finding either a discrete 
drop or increasingly negative trend in accident rates after an RLC program begins. After 
testing for this break in the trend in many ways, we find no evidence that the pattern changed 
from the pre-RLC decreasing trend. In Figure 2, we display the accidents per million cars 
traveling through an intersection per day over the 57 months of the study. On the left are the 
actual data. On the right we clarify the trend by adjusting the rates for seasonal variations. In 
Greensboro we found generally lower accident rates in the winter and summer months, and 
higher rates in the spring and fall. In either graph, a discrete drop or shift in trend at the 27th 
month is not evident.12 In fact, looking at the seasonally adjusted data, the trend appears to 
level off or even increase. 

Figure 2: Accident Trend 

  

 

 

 

 

 

4.1.  The Poisson Regression Model 
Given this background, a method to estimate the effect of red light cameras on accident rates, 
ceteris paribus, must control for as many possible confounding factors as possible. Following 
convention in analyzing count data, we use Poisson regression in this study. Because the 
dependent variables )( iy  in these equations are the counts of crashes by type and severity 
and are nonnegative, the distribution to use is Poisson, which is of the form: 
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where λλ == )(,)( YVarYE , e is the base of the natural logarithm, λ is the expected value of 
the number of accidents, which in our model is determined by the characteristics of each 
intersection. To ensure that λ=)(yE  is positive, the functional form used is, 

  )|( iX
ii eXYE Β=  or ...)ln( 2211 +++= XBXBBoiλ . Following conventions in accident 

studies that use rates, i.e., accidents/volume, the left-hand side can be rewritten in logarithms 
as ...)/ln( 2211 +++= XBXBBADV oiiλ  Re-arranging the terms and solving gives,  

)2()ln(...)ln( 2211 ioi ADVXBXBB ++++=λ  

                                                 
12 We also checked for jumps and trend changes in the regression models which follow.  In all cases, the 
continuous, linear trend pattern fit the data best. 
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Equation (2) implies that )ln( iADV could be included as an explanatory variable whose 
coefficient is constrained to one. However, as suggested in Maddala (1983, p. 52), including 
it as an unconstrained explanatory variable has merit. For example, if it is constrained to one, 
the obvious interpretation is that a 1 percent increase in volume must increase accident rates 
by exactly 1 percent. Freely estimating it allows for the possibility that doubling traffic 
volume may more or less than double accident rates. Indeed, it is known that some types of 
accidents are more likely to occur under conditions of lower traffic volume, such as when a 
driver falls asleep. 

The model as described above is often called a Poisson regression model with a log link. In 
this model, the estimated coefficients (bj) of the continuous variables are the proportional 
change in the monthly accident rate for small changes in X. For larger changes in X (say 
∆X=1, as in a dummy variable), this is calculated as the proportional change in its expected 
value, which is 1−jbe , and the marginal effect on accidents per month of a change in ix  is, 
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Where ...2211 +++ ixbixbob  is normally evaluated at the mean values of x1, x2, etc. 

The jb  are estimated using a maximum likelihood technique. Of course, instead of the 
normal distribution, the Poisson distribution for count data is used. Rewriting equation (1) to 
include the parameters and explanatory variables, 
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Taking the log, and substituting the observed yi for k, we can write the log-likelihood 
function as 
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where we drop the last term (-log(yi!)) because it does not involve the B. 

A major drawback of the Poisson regression is that the underlying probability distribution 
assumes that the mean and variance are equal. More often than not, this is a false assumption. 
When the variance is not equal to the mean, maximum likelihood estimates of the 
coefficients are unbiased; however, the standard errors will be inaccurate. If the variance is 
greater than the mean (over-dispersion), the reported standard errors will be biased 
downward and vice versa. One option is to simply adjust the standard errors using some 
estimate of the variance generated from the data. However, this method lowers the efficiency 
of the estimates. If over-dispersion is likely, the preferred method is to extend the Poisson 
model by adding an error term to Equation (2), which for mathematical convenience has a 
gamma distribution with a mean of one and variance α. This model is commonly called a 
Negative Binomial Model (Cameron and Trivedi, 1986). The interpretation of the Poisson 
and the negative binomial coefficients are the same. The only difference is the estimation of 
the α parameter, which is constrained to be greater than zero. The α is a measure of the 
degree to which the variance exceeds the mean of the distribution.  
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We attempted to run the Negative Binomial model, but they are notoriously hard to estimate. 
In many data sets, estimates cannot be computed for the coefficients. Because the Negative 
Binomial model failed to converge so often, we instead correct for possible overdispersion by 
using robust covariance estimators (Huber, 1967), which can help correct for these problems. 
The estimates were computed using Limdep version 8.0. Three goodness of fit measures are 
reported. The Chi squared test with 17 degrees of freedom tests for overall explanatory power 
of the model. The RsqP and RsqD are Pseudo R2 measures that can be loosely interpreted at 
the “prediction accuracy” of the model. See Greene (2003, p. 742) for details on the 
calculation and interpretation. Note, however, that in count data models with low process 
means the prediction accuracy will almost always be very low. 

4.2  Note on Correlation vs. Causation 
Often in the results that follow, one will see results that seem counterintuitive at first. For 
example, it will often be the case that that longer all-red time is associated with increased 
accidents, and higher speed limits have negative relationships with total crashes. The 
counterintuitive results for all-red time and speed limits (and occasionally other variables) 
warrant special mention. Strictly speaking, none of the variables examined in this study were 
randomly assigned as in a true experimental setting. Indeed, most would argue that doing so 
would be irresponsible.  

In this case, we see that longer all-red times are associated with intersections that have higher 
accident rates, ceteris paribus. A naïve interpretation would suggest that longer all-red times 
cause increased accidents. However, during the study, very few signal timings were changed, 
so in fact we know nothing about the impact of changes in red light timing. A more likely 
interpretation would be that engineers at the GDOT made some changes at dangerous 
intersections, such as prohibiting right turn on red, increasing all-red timing, and reducing 
speed limits at intersections. Because we do not observe many changes in these intersection 
characteristics, we cannot infer the effect of these changes in the data. 

The only variables that may be (more or less) strictly interpreted as natural experiments are 
snowfall and precipitation amounts. To a lesser degree, the placement of red light cameras 
can be thought of as a natural experiment, keeping in mind probable regression to the mean 
biases (which tend to cause the RLC coefficient to be reported as a more negative number 
than the truth13). Of course, the major difference between the RLC variable and some of the 
others mentioned above is that we do include data on accident trends both before and after 
the installation of these cameras. We will, therefore, restrict our statements when discussing 
most of the explanatory variables to statements of association. Although we may use the 
word “cause” when discussing the estimated impacts of RLCs, it should be interpreted 
carefully. And, although not the optimal study design to determine actual cause and effect, 
we believe that our before-after design, controlling for as many other influences as possible, 
is the best practical method that can be used in such a study. 

                                                 
13 Note that this bias makes it likely to find that red light cameras reduce accidents, even when they do not. 
As seen in the next section, it gives even more credence to the estimates showing an association of RLCs 
with increased accidents. 
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5. Estimation and Results: Crashes by Type 
 
Individual equations for types and severity of accidents were estimated by maximum 
likelihood methods to determine the effects of red light cameras and other variables on type 
and severity of accidents at signalized intersections. Initial estimation showed that the 
equations for some types of crashes gave very poor results. These equations involved 
categories of accidents that were extremely rare, and so they were grouped together as 
described in the discussion of Table 3.1 (into 6 accident types and 3 severity levels). 

As part of the estimation, we imposed three equality constraints involving six coefficients 
and three pairs of variables. These constraints were with respect to amber time for each road, 
all-red time, and one-way roads at intersections. Thus, for each pair of variables (e.g., all-red 
time for each road at an intersection), the estimated coefficients were set to be equal. The 
rationale for these constraints is that each pair of variables should have equal effects at 
intersections.  

5.1.  Total Crashes  
Table 5.1 shows the estimated results for total crashes. The observed pattern follows the 
discussions in Section 4 quite well. The overall time trend (MONTH) is negative and highly 
significant. Since the coefficient -.004 is very close to zero, we can interpret this as roughly a 
0.4 percent decrease in accidents over time. While this sounds small, this compounds to an 
almost 5 percent decrease on a yearly basis. Most of the coefficients have the expected signs, 
but as discussed in Section 4.2, the majority of the coefficients should not be interpreted 
literally.  

The coefficient of RLCPRES is positive and highly statistically significant, indicating an 
increase in crash rates associated with the placement of a RLC. Because this coefficient is 
close to zero, the marginal effect should be calculated as .349( 1) .42e − ≈ , or a 42 percent 
increase. The model is estimating that, had an RLC not been placed at a particular 
intersection, we may have seen a 42% decrease in the accident rate at that intersection (if we 
could hold all other factors constant). Similar to what was seen in the raw data in Section 4, 
the sites with RLCs are not experiencing the decreasing trend in accidents seen elsewhere. 
Additionally, the other characteristics of intersections with RLCs are not explaining the 
difference in accident rates.  

Three other coefficients from the regression are worthy of note. The weather variables 
SNOW and PRECIP are both statistically significant. The coefficient on SNOW is negative, 
implying that an additional inch of snow in a month is related to a 2 percent lower accident 
rate. Though this finding may appear counterintuitive, it reflects weather conditions in the 
study area. Greensboro receives very little snowfall, and when predicted, it is preceded by 
school and business closures that remove traffic from the roads. Thus, the reduction in traffic 
volume that occurs during snowfall is responsible for this relationship. The same result does 
not hold for total rainfall, which has a positive relationship with total crashes. 

Finally, the natural logarithm of average daily volume Log(ADV) is interesting. As shown in 
Equation (2) in Section 4, this coefficient describes how accident counts relate to the volume 
of traffic at an intersection. A coefficient of 1.0 would imply that a 1 percent increase in 
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volume would lead to a 1 percent increase in accidents. For the total number of accidents, we 
have an estimated coefficient of 1.23. This implies that overall, 1 percent more traffic is 
associated with more than a 1 percent increase in accidents. Of course, this will vary by the 
specific type of accident, as we shall see below. 

Table 5.1: Total Crashes 

 Poisson Regression               
 Dependent variable        Total Crashes    
 Weighting variable          None    
 Number of observations       17271    
 Log likelihood function     -17208.48    
 Restricted log likelihood    -19097.81    
 Chi squared            3778.670    
 Degrees of freedom           17    
 Prob[ChiSqd > value] =      .0000000    
 Chi- squared = 20105.51591 RsqP=  .1870   
 G - squared = 18488.50363 RsqD=  .1697   
 Overdispersion tests: g=mu(i):  10.667    
 Overdispersion tests: g=mu(i)^2:  10.450    
 Robust (sandwich) estimator used for VC    
  
Variable Coefficient SE b/St.Er. P Value Mean X
CONSTANT -12.363 0.347 -35.621 0.000   
MONTH -0.004 0.001 -5.304 0.000 29.000 
RLCPRES 0.349 0.046 7.649 0.000 0.029 
TOTLTL 0.079 0.015 5.135 0.000 1.640 
DEDRTL 0.046 0.023 2.004 0.045 0.446 
SWLK 0.124 0.027 4.493 0.000 0.432 
SLDMED -0.074 0.030 -2.478 0.013 0.175 
PEDSIG -0.250 0.032 -7.846 0.000 0.257 
NLT 0.036 0.036 1.003 0.316 0.102 
NTR 0.101 0.026 3.912 0.000 0.208 
SNOW -0.020 0.008 -2.542 0.011 0.410 
PRECIP 0.009 0.005 1.790 0.074 3.645 
TOTLN 0.003 0.005 0.619 0.536 8.135 
ST1FLOW -0.112 0.024 -4.640 0.000 0.911 
ST2FLOW -0.112 0.024 -4.640 0.000 0.861 
ST1RED 0.010 0.013 0.774 0.439 1.552 
ST2RED 0.010 0.013 0.774 0.439 1.543 
AMBD1 -0.133 0.028 -4.738 0.000 0.569 
AMBD2 -0.133 0.028 -4.738 0.000 0.567 
ST1SP -0.008 0.002 -3.499 0.001 34.670 
ST2SP -0.008 0.002 -3.499 0.001 34.868 
Log(ADV) 1.233 0.031 40.399 0.000 10.134 

 
Notes: Month = time trend, RLCPRES = presence of RLC, TOTLTL = number of left turn lanes at intersection, DEDRTL = dedicated 
right turn lane at intersection (yes = 1, no =0), SWLK = sidewalk at intersection (yes = 1, no = 0), SLDMED = solid median at 
intersection, PEDSIG = pedestrian signal, NLT and NTR = no left turn and no right turn on red signs, ST#Flow = traffic on road 1 or 2 
(one-way road = 0, two-way road = 1), ST#RED = all red time on road 1 or 2, AMBD# = amber time above recommended time on 
road 1 or 2, ST#SP = posted speed limit on roads 1 or 2, LOG(ADV) = natural log of daily traffic volume. 
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5.2.  Angle Crashes 
Given the results above, it is of interest to examine how various types of crashes at signalized 
intersections are related to red light cameras, controlling for the effects of road and traffic 
light characteristics, traffic signs, and weather. The first type of crash considered is angle or 
front-into-side crashes. The results from analyzing angle crashes are in Table 5.2. Consistent 
with our earlier finding, the coefficient of red light cameras is positive; however, the p value 
0.183 is too high to confidently say that this coefficient is nonzero. This is consistent with the 
information in Tables 4.2 and 4.3, where small increases were seen in the monthly angle 
accident rate at both RLC and NON-RLC sites. The small, positive coefficient on MONTH is 
also consistent with the raw data. 

As mentioned previously, this category of accidents is the one most often cited as the target 
of RLC programs. If RLCs reduce the number of violators who enter into an intersection well 
after the signal has turned red, then we would expect the angle accidents to decrease. While 
we cannot confidently say that angle accidents at RLC sites are increasing relative to other 
sites, there is certainly no evidence of a decrease. In fact, the p value of a one tailed test 
( : 0, : 0o aH B H B≤ > ) would be 0.0915. The fact that this category of accident is going up 
over time does not indicate that an overall benefit is being felt from reduced red light running 
at other intersections due to a “spillover effect.” 

Looking at the other variables, these accidents are positively related to the number of left turn 
lanes, dedicated right turn lanes, and presence of sidewalks. These factors are all indicators of 
a wider carriageway that vehicles must cross before they clear an intersection. Again, these 
relationships are not causal, merely correlations. We also see that one way roads, 
intersections with pedestrian signals, and longer than the minimum recommended amber 
timing are associated with decreased accidents. Finally, the Coefficient on Log(ADV) is 
extremely close to one, indicating that an increase in traffic volume is associated with an 
equal percentage increase in these angle accidents.  
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Table 5.2: Angle Crashes  
 Poisson Regression               
 Dependent variable         ANGLE    
 Weighting variable          None    
 Number of observations       17271    
 Log likelihood function     -9411.363    
 Restricted log likelihood    -9856.574    
 Chi squared           890.4210    
 Degrees of freedom           17    
 Prob[ChiSqd > value] =      .0000000    
 Chi- squared = 18536.82668 RsqP=  .0471   
 G - squared = 12163.52994 RsqD=  .0682   
 Overdispersion tests: g=mu(i):  5.777    
 Overdispersion tests: g=mu(i)^2:  4.930    
 Robust (sandwich) estimator used for VC    
  
Variable Coefficient SE b/St.Er. P Value Mean X
CONSTANT -10.793 0.544 -19.834 0.000   
MONTH 0.003 0.001 2.593 0.010 29.000 
RLCPRES 0.111 0.084 1.332 0.183 0.029 
TOTLTL 0.084 0.025 3.400 0.001 1.640 
DEDRTL 0.074 0.037 2.031 0.042 0.446 
SWLK 0.330 0.043 7.728 0.000 0.432 
SLDMED -0.080 0.050 -1.597 0.110 0.175 
PEDSIG -0.364 0.051 -7.212 0.000 0.257 
NLT 0.055 0.057 0.960 0.337 0.102 
NTR 0.104 0.041 2.544 0.011 0.208 
SNOW -0.015 0.012 -1.218 0.223 0.410 
PRECIP -0.002 0.008 -0.240 0.810 3.645 
TOTLN -0.009 0.009 -0.951 0.342 8.135 
ST1FLOW -0.228 0.037 -6.096 0.000 0.911 
ST2FLOW -0.228 0.037 -6.096 0.000 0.861 
ST1RED -0.025 0.020 -1.244 0.213 1.552 
ST2RED -0.025 0.020 -1.244 0.213 1.543 
AMBD1 -0.233 0.046 -5.039 0.000 0.569 
AMBD2 -0.233 0.046 -5.039 0.000 0.567 
ST1SP -0.011 0.004 -2.865 0.004 34.670 
ST2SP -0.011 0.004 -2.865 0.004 34.868 
Log(ADV) 1.030 0.047 22.125 0.000 10.134 
 
Notes: Month = time trend, RLCPRES = presence of RLC, TOTLTL = number of left turn lanes at intersection, DEDRTL = dedicated 
right turn lane at intersection (yes = 1, no =0), SWLK = sidewalk at intersection (yes = 1, no = 0), SLDMED = solid median at 
intersection, PEDSIG = pedestrian signal, NLT and NTR = no left turn and no right turn on red signs, ST#Flow = traffic on road 1 or 2 
(one-way road = 0, two-way road = 1), ST#RED = all red time on road 1 or 2, AMBD# = amber time above recommended time on 
road 1 or 2, ST#SP = posted speed limit on roads 1 or 2, LOG(ADV) = natural log of daily traffic volume. 
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5.3.  Crashing into the Rear of a Slowed or Stopped Vehicle 
As mentioned previously, this category of crashes is likely to suffer from censoring due to the 
$1,000/injury reporting threshold. Table 5.3 shows the average damage per vehicle involved 
for the various crash types. Note that the lowest two categories for vehicle damage 
correspond to pedestrians and cyclists and are likely to be reported under the injury threshold. 

Table 5.4 shows the estimation results for accidents that occur when a moving vehicle 
crashes into the rear of a slowed or stopped vehicle at an intersection. We expected this type 
of accident to increase because drivers may panic from seeing the camera and stop 
prematurely. As can be expected, with rear-end accidents increasing at RLC sites but 
decreasing elsewhere (see Tables 4.2 and 4.3), the model estimates a very large impact of 
RLCs on rear-end crashes. The coefficient of 0.578 yields a marginal effect of an 
approximate 78 percent increase in the accident risk associated with these sites. While this 
sounds unbelievably high, one can simplistically understand this estimate in the following 
way: Similar to the overall time trend for Total Crashes, for Rear End, Slow or Stopped the 
prevailing time trend is a decrease of 0.4 percent per month, or around 5 percent per year. 
Over the course of the study this could account for an approximate 25 percent decrease. 
However, in the before/after table (Table 4.2), the raw data show approximately a 10 percent 
increase at the RLC sites. This difference alone accounts for roughly a 35 percent difference 
attributable to the RLC placement. 

Additionally, we see that snow is associated with a decrease in monthly rear-end crashes due 
to its regional impact on traffic volumes. We also see that total precipitation has an increasing 
relationship with rear-end crashes, which would be expected with the decreased traction in 
wet weather. The coefficient on Log(ADV) of 1.831 tells us that intersections with high 
traffic volume are likely to experience substantially more rear-end crashes, even after taking 
volume into account. 

Interestingly, we also see that more rear-end accidents occur on one-way streets, where speed 
limits are higher, and where the amber timing is longer than recommended. We could 
conjecture that when there is a long amber time, drivers who are aware of the long time may 
be caught off guard by unaware drivers stopping unexpectedly. 
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Crash Type Mean Damage/Vehicle 
PEDESTRIAN $128.75 
PEDALCYCLIST $601.76 
BACKING UP $1,094.28 
OTHER NON-COLLISION $1,436.49 
SIDESWIPE, SAME DIRECTION $1,493.12 
REAR END, TURN $1,513.32 
REAR END, SLOW OR STOP $1,588.78 
ANIMAL $1,681.58 
RIGHT TURN, SAME ROADWAY $1,778.07 
RIGHT TURN, DIFFERENT ROADWAYS $1,867.83 
PARKED MOTOR VEHICLE $2,052.70 
UNKNOWN $2,286.84 
SIDESWIPE,OPPOSITE DIRECTION $2,480.12 
MOVABLE OBJECT $2,500.00 
LEFT TURN, DIFFERENT ROADWAYS $2,546.25 
RAN OFF ROAD - STRAIGHT $2,626.91 
LEFT TURN, SAME ROADWAY $2,666.82 
RAN OFF ROAD - LEFT $2,824.24 
ANGLE $2,915.99 
OTHER COLLISION WITH VEHICLE $3,163.95 
RAN OFF ROAD - RIGHT $3,405.96 
HEAD ON $3,433.50 
FIXED OBJECT $3,564.58 
OVERTURN/ROLLOVER $4,187.50 
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Table 5.4: Crashing into rear of slowed or stopped vehicles  
Poisson Regression               
 Dependent variable        REARSTOP    
 Weighting variable          None    
 Number of observations       17271    
 Log likelihood function     -8064.160    
 Restricted log likelihood    -9455.494    
 Chi squared           2782.668    
 Degrees of freedom           17    
 Prob[ChiSqd > value] =      .0000000    
 Chi- squared = 19046.08965 RsqP=  .1705   
 G - squared = 10319.68886 RsqD=  .2124   
 Overdispersion tests: g=mu(i):  4.020    
 Overdispersion tests: g=mu(i)^2:  3.612    
 Robust (sandwich) estimator used for VC    
  
Variable Coefficient SE b/St.Er. P Value Mean X
CONSTANT -21.683 0.627 -34.571 0.000   
MONTH -0.004 0.001 -2.943 0.003 29.000 
RLCPRES 0.578 0.065 8.906 0.000 0.029 
TOTLTL 0.063 0.027 2.299 0.022 1.640 
DEDRTL -0.008 0.040 -0.193 0.847 0.446 
SWLK -0.072 0.051 -1.411 0.158 0.432 
SLDMED -0.086 0.048 -1.797 0.072 0.175 
PEDSIG -0.057 0.057 -1.005 0.315 0.257 
NLT 0.101 0.060 1.688 0.091 0.102 
NTR 0.121 0.044 2.764 0.006 0.208 
SNOW -0.036 0.013 -2.672 0.008 0.410 
PRECIP 0.015 0.008 1.779 0.075 3.645 
TOTLN 0.005 0.009 0.598 0.550 8.135 
ST1FLOW 0.198 0.053 3.727 0.000 0.911 
ST2FLOW 0.198 0.053 3.727 0.000 0.861 
ST1RED 0.010 0.021 0.459 0.646 1.552 
ST2RED 0.010 0.021 0.459 0.646 1.543 
AMBD1 0.094 0.044 2.132 0.033 0.569 
AMBD2 0.094 0.044 2.132 0.033 0.567 
ST1SP 0.007 0.004 1.971 0.049 34.670 
ST2SP 0.007 0.004 1.971 0.049 34.868 
Log(ADV) 1.831 0.058 31.698 0.000 10.134 
 
Notes: Month = time trend, RLCPRES = presence of RLC, TOTLTL = number of left turn lanes at intersection, DEDRTL = dedicated 
right turn lane at intersection (yes = 1, no =0), SWLK = sidewalk at intersection (yes = 1, no = 0), SLDMED = solid median at 
intersection, PEDSIG = pedestrian signal, NLT and NTR = no left turn and no right turn on red signs, ST#Flow = traffic on road 1 or 2 
(one-way road = 0, two-way road = 1), ST#RED = all red time on road 1 or 2, AMBD# = amber time above recommended time on 
road 1 or 2, ST#SP = posted speed limit on roads 1 or 2, LOG(ADV) = natural log of daily traffic volume. 
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5.4.  Left Turning Vehicles on Different Roadways 
Another type of accident studied involved a vehicle turning left crashing with a car traveling 
on a different roadway. Table 5.5 shows the results of the negative binomial regression. The 
regression results show that this type of accident reduced over the analysis period as 
evidenced by the negative (-0.028) and statistically significant (probability < 0.0001) 
coefficient of MONTH in the results. However, this type of accident reduced even more at 
the RLC sites after the introduction of the RLC.  

This reduction in accidents among left turning vehicles and different roadways is the one 
example of a benefit found related to the red light cameras. The negative coefficient of -0.922 
has a p value of .052, almost statistically significant at the .05 level. The estimated effect is 
large, suggesting a 60 percent decrease of this type of crash. However, the estimate is not 
very precise and could greatly over- or underestimate the true impact. Though this is one of 
the more common types of accidents, it is far less common than angle or rear-end accidents, 
representing approximately 3.57 percent of the accidents in this study. Therefore, this large 
percentage decrease should be judged in the context that there were only 40 of these 
accidents during the approximately five years of the study at the RLC sites. 

Nevertheless, it is striking to see such a decrease, from 34 accidents in the “before” period, to 
only 6 after. Perhaps this information could be used to discover an intervention that has a 
similar impact on these left turning crashes that does not possess the negative effects on other 
types of crashes. 

 

5.5. Sideswipe a Vehicle Moving in the Same Direction 
Another traffic accident that occurs at or near intersections is a vehicle side swiping another 
moving in the same direction. This type of accident is also likely to be highly censored due to 
the low damage value of these crashes and the unlikelihood of injury. This type of accident 
may occur due to distraction or an attempt to change lanes without looking for vehicles in 
blind spots. Table 5.6 shows the estimated parameters for this type of accident and their 
levels of significance. From these results, this type of accident increased in the analysis 
period. However, the addition of a RLC to an intersection is associated with a further 
increase. Precipitation appeared to be unrelated to this type of accident. The high (1.416) 
coefficient on Log(ADV) suggests that roads with high volumes experience this type of 
accident much more frequently, so that an intersection with twice the volume will experience 
much more than twice the number of sideswipes.  
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Table 5.5: Crashes involving left turning vehicles on different roadways     
Poisson Regression               
 Dependent variable        LTURNDIF    
 Weighting variable          None    
 Number of observations       17271    
 Log likelihood function     -1735.354    
 Restricted log likelihood    -1857.693    
 Chi squared           244.6795    
 Degrees of freedom           17    
 Prob[ChiSqd > value] =      .0000000    
 Chi- squared = 18216.62437 RsqP=  .0393   
 G - squared = 2736.59185 RsqD=  .0821   
 Overdispersion tests: g=mu(i):  2.562    
 Overdispersion tests: g=mu(i)^2:  4.017    
 Robust (sandwich) estimator used for VC    
  
Variable Coefficient SE b/St.Er. P Value Mean X
CONSTANT -13.009 1.732 -7.510 0.000   
MONTH -0.028 0.004 -7.063 0.000 29.000 
RLCPRES -0.922 0.475 -1.941 0.052 0.029 
TOTLTL 0.154 0.074 2.080 0.038 1.640 
DEDRTL 0.072 0.113 0.641 0.522 0.446 
SWLK -0.201 0.157 -1.280 0.201 0.432 
SLDMED 0.028 0.149 0.187 0.852 0.175 
PEDSIG -0.202 0.181 -1.113 0.266 0.257 
NLT 0.274 0.194 1.412 0.158 0.102 
NTR -0.546 0.159 -3.429 0.001 0.208 
SNOW 0.038 0.041 0.939 0.348 0.410 
PRECIP 0.042 0.024 1.703 0.089 3.645 
TOTLN 0.004 0.030 0.135 0.893 8.135 
ST1FLOW 0.424 0.172 2.464 0.014 0.911 
ST2FLOW 0.424 0.172 2.464 0.014 0.861 
ST1RED 0.034 0.051 0.671 0.502 1.552 
ST2RED 0.034 0.051 0.671 0.502 1.543 
AMBD1 -0.309 0.138 -2.232 0.026 0.569 
AMBD2 -0.309 0.138 -2.232 0.026 0.567 
ST1SP -0.014 0.013 -1.099 0.272 34.670 
ST2SP -0.014 0.013 -1.099 0.272 34.868 
Log(ADV) 0.975 0.150 6.505 0.000 10.134 

 
Notes: Month = time trend, RLCPRES = presence of RLC, TOTLTL = number of left turn lanes at intersection, DEDRTL = dedicated 
right turn lane at intersection (yes = 1, no =0), SWLK = sidewalk at intersection (yes = 1, no = 0), SLDMED = solid median at 
intersection, PEDSIG = pedestrian signal, NLT and NTR = no left turn and no right turn on red signs, ST#Flow = traffic on road 1 or 2 
(one-way road = 0, two-way road = 1), ST#RED = all red time on road 1 or 2, AMBD# = amber time above recommended time on 
road 1 or 2, ST#SP = posted speed limit on roads 1 or 2, LOG(ADV) = natural log of daily traffic volume. 
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Table 5.6: Sideswiped accidents: Same direction   
 Poisson Regression               
 Dependent variable         SSWSAM    
 Weighting variable          None    
 Number of observations       17271    
 Log likelihood function     -2523.097    
 Restricted log likelihood    -2687.213    
 Chi squared           328.2319    
 Degrees of freedom           17    
 Prob[ChiSqd > value] =      .0000000    
 Chi- squared = 17115.88469 RsqP=  .0246   
 G - squared = 3832.37488 RsqD=  .0789   
 Overdispersion tests: g=mu(i):  -.984    
 Overdispersion tests: g=mu(i)^2: -.556    
 Robust (sandwich) estimator used for VC    
  
Variable Coefficient SE b/St.Er. P Value Mean X 
CONSTANT -15.126 1.323 -11.437 0.000   
MONTH 0.005 0.003 1.750 0.080 29.000 
RLCPRES 0.352 0.165 2.132 0.033 0.029 
TOTLTL 0.093 0.057 1.627 0.104 1.640 
DEDRTL 0.039 0.086 0.449 0.653 0.446 
SWLK 0.205 0.100 2.050 0.040 0.432 
SLDMED 0.088 0.105 0.832 0.406 0.175 
PEDSIG -0.269 0.116 -2.317 0.021 0.257 
NLT -0.116 0.139 -0.834 0.404 0.102 
NTR 0.024 0.102 0.237 0.813 0.208 
SNOW -0.067 0.032 -2.091 0.037 0.410 
PRECIP -0.021 0.019 -1.074 0.283 3.645 
TOTLN 0.035 0.020 1.721 0.085 8.135 
ST1FLOW -0.569 0.079 -7.218 0.000 0.911 
ST2FLOW -0.569 0.079 -7.218 0.000 0.861 
ST1RED 0.168 0.046 3.649 0.000 1.552 
ST2RED 0.168 0.046 3.649 0.000 1.543 
AMBD1 -0.342 0.100 -3.418 0.001 0.569 
AMBD2 -0.342 0.100 -3.418 0.001 0.567 
ST1SP -0.036 0.008 -4.324 0.000 34.670 
ST2SP -0.036 0.008 -4.324 0.000 34.868 
Log(ADV) 1.416 0.122 11.611 0.000 10.134 

 
Notes: Month = time trend, RLCPRES = presence of RLC, TOTLTL = number of left turn lanes at intersection, DEDRTL = dedicated 
right turn lane at intersection (yes = 1, no =0), SWLK = sidewalk at intersection (yes = 1, no = 0), SLDMED = solid median at 
intersection, PEDSIG = pedestrian signal, NLT and NTR = no left turn and no right turn on red signs, ST#Flow = traffic on road 1 or 2 
(one-way road = 0, two-way road = 1), ST#RED = all red time on road 1 or 2, AMBD# = amber time above recommended time on 
road 1 or 2, ST#SP = posted speed limit on roads 1 or 2, LOG(ADV) = natural log of daily traffic volume. 
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5.6.  Accidents Involving Left Turning Vehicles on the  
Same Roadway 

Table 5.7 shows that over time, accidents involving left-turning vehicles on the same 
roadway have reduced by a large percentage, as shown by the time coefficient of –0.024 
(probability < 0.0001). In addition, several other factors seem to be associated with lower 
levels of these accidents, including pedestrian crossing signals, longer amber time, and higher 
posted speed limits. The absence of a red light camera has a weak, positive relationship with 
these accidents. Specifically, its coefficient is positive (0.279) and marginally statistically 
significant (p = 0.078). All-red time, the number of left-turn lanes, and the presence of 
dedicated right-turn lanes are positively associated with this type of accident.  

As could be expected, if one of the carriageways does not allow left turns (NLT), this will 
cause a large decrease in accidents involving left turns, though this observation probably has 
little policy relevance. However, the effect of amber time is quite large and should be 
investigated in a more experimental setting.  

5.7. Other Crashes 
All other types of crashes were analyzed in aggregate form because each occurred very 
rarely. Because of the extremely varied nature of these other accidents, it is more difficult to 
interpret the meaning of the coefficients. However, in Table 5.8 the pattern of sign and 
significance is largely similar to the results seen in the other categories of crashes, with a 
prevailing negative time trend and a positive effect associated with red light cameras. 
However, the p value of 0.113 is not low enough to confidently conclude that a relationship 
exists with the presence of red light cameras. 
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Table 5.7: Left turn in same direction  
Poisson Regression               
 Dependent variable        LTURNSAM    
 Weighting variable          None    
 Number of observations       17271    
 Log likelihood function    -3992.030    
 Restricted log likelihood    -4229.833    
 Chi squared           475.6053    
 Degrees of freedom           17    
 Prob[ChiSqd > value] =      .0000000    
 Chi- squared = 18405.98517 RsqP=  .0349   
 G - squared = 5874.86471 RsqD=  .0749   
 Overdispersion tests: g=mu(i):  2.932    
 Overdispersion tests: g=mu(i)^2:  2.980    
 Robust (sandwich) estimator used for VC    
  
Variable Coefficient SE b/St.Er. P Value Mean X 
CONSTANT -10.234 1.018 -10.057 0.000   
MONTH -0.024 0.002 -11.095 0.000 29.000 
RLCPRES 0.279 0.158 1.762 0.078 0.029 
TOTLTL 0.103 0.042 2.427 0.015 1.640 
DEDRTL 0.195 0.066 2.933 0.003 0.446 
SWLK 0.203 0.079 2.568 0.010 0.432 
SLDMED -0.207 0.090 -2.295 0.022 0.175 
PEDSIG -0.441 0.092 -4.769 0.000 0.257 
NLT -0.357 0.128 -2.784 0.005 0.102 
NTR 0.101 0.077 1.307 0.191 0.208 
SNOW 0.027 0.024 1.150 0.250 0.410 
PRECIP -0.002 0.015 -0.148 0.883 3.645 
TOTLN 0.007 0.015 0.491 0.624 8.135 
ST1FLOW -0.179 0.069 -2.582 0.010 0.911 
ST2FLOW -0.179 0.069 -2.582 0.010 0.861 
ST1RED 0.025 0.033 0.755 0.450 1.552 
ST2RED 0.025 0.033 0.755 0.450 1.543 
AMBD1 -0.387 0.093 -4.166 0.000 0.569 
AMBD2 -0.387 0.093 -4.166 0.000 0.567 
ST1SP -0.028 0.008 -3.531 0.000 34.670 
ST2SP -0.028 0.008 -3.531 0.000 34.868 
Log(ADV) 1.018 0.088 11.615 0.000 10.134 

 
Notes: Month = time trend, RLCPRES = presence of RLC, TOTLTL = number of left turn lanes at intersection, DEDRTL = dedicated 
right turn lane at intersection (yes = 1, no =0), SWLK = sidewalk at intersection (yes = 1, no = 0), SLDMED = solid median at 
intersection, PEDSIG = pedestrian signal, NLT and NTR = no left turn and no right turn on red signs, ST#Flow = traffic on road 1 or 2 
(one-way road = 0, two-way road = 1), ST#RED = all red time on road 1 or 2, AMBD# = amber time above recommended time on 
road 1 or 2, ST#SP = posted speed limit on roads 1 or 2, LOG(ADV) = natural log of daily traffic volume. 
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Table 5.8: Other accidents 
 Poisson Regression               
 Dependent variable         OTHACC    
 Weighting variable          None    
 Number of observations       17271    
 Log likelihood function     -5103.704    
 Restricted log likelihood    -5207.737    
 Chi squared           208.0663    
 Degrees of freedom           17    
 Prob[ChiSqd > value] =      .0000000    
 Chi- squared = 17758.85244 RsqP = .0123   
 G - squared = 7351.35199 RsqD = .0275   
 Overdispersion tests: g=mu(i):  2.057    
 Overdispersion tests: g=mu(i)^2:  2.055    
 Robust (sandwich) estimator used for VC    
  
Variable Coefficient SE b/St.Er. P Value Mean X 
CONSTANT -8.509 0.846 -10.055 0.000   
MONTH -0.003 0.002 -1.675 0.094 29.000 
RLCPRES 0.196 0.124 1.584 0.113 0.029 
TOTLTL 0.099 0.038 2.595 0.010 1.640 
DEDRTL -0.002 0.057 -0.032 0.975 0.446 
SWLK -0.003 0.070 -0.038 0.970 0.432 
SLDMED -0.114 0.074 -1.548 0.122 0.175 
PEDSIG -0.146 0.077 -1.895 0.058 0.257 
NLT 0.067 0.091 0.741 0.459 0.102 
NTR 0.143 0.066 2.183 0.029 0.208 
SNOW -0.023 0.019 -1.228 0.219 0.410 
PRECIP 0.018 0.012 1.449 0.147 3.645 
TOTLN 0.014 0.013 1.067 0.286 8.135 
ST1FLOW 0.021 0.063 0.329 0.742 0.911 
ST2FLOW 0.021 0.063 0.329 0.742 0.861 
ST1RED -0.001 0.030 -0.035 0.972 1.552 
ST2RED -0.001 0.030 -0.035 0.972 1.543 
AMBD1 -0.119 0.076 -1.576 0.115 0.569 
AMBD2 -0.119 0.076 -1.576 0.115 0.567 
ST1SP -0.012 0.006 -1.934 0.053 34.670 
ST2SP -0.012 0.006 -1.934 0.053 34.868 
Log(ADV) 0.661 0.071 9.324 0.000 10.134 

 
Notes: Month = time trend, RLCPRES = presence of RLC, TOTLTL = number of left turn lanes at intersection, DEDRTL = dedicated 
right turn lane at intersection (yes = 1, no =0), SWLK = sidewalk at intersection (yes = 1, no = 0), SLDMED = solid median at 
intersection, PEDSIG = pedestrian signal, NLT and NTR = no left turn and no right turn on red signs, ST#Flow = traffic on road 1 or 2 
(one-way road = 0, two-way road = 1), ST#RED = all red time on road 1 or 2, AMBD# = amber time above recommended time on 
road 1 or 2, ST#SP = posted speed limit on roads 1 or 2, LOG(ADV) = natural log of daily traffic volume. 
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6. Estimation and Results: Crashes by Severity 
 
Given that red light cameras are associated with increases in most types of accidents, there is 
the possibility that RLC benefits are found in a reduction in the severity of accidents. As 
noted earlier, severity of crashes is broken into the following categories: fatalities, severe, 
evident/visible, possible, and property damage. Again, accident reports are filed only for 
accidents where the officer estimates property damage of $1,000 or more, so the property 
damage data are censored. The three most severe categories of crashes are very small 
percentages of total crashes individually, and are, therefore, combined in the analysis 
following into a category called “Severe” crashes. For the convenience of the reader, we 
duplicate Table 2.1 showing the various levels of severity and their estimated costs: 

Table 2.1: Comprehensive Costs, Each Occurrence (KABC Scale) 

Severity Description FHWA (1994) FHWA (2002) NCDOT 2001
K (FTL) Fatal $2,600,000 $2,979,600 $3,300,000
A Incapacitating 180,000 206,280 200,000
B Evident 36,000 41,256 57,000
C Possible 19,000 21,774 27,000
PDO Property Damage Only 2,000 2,292 3,900
 
In the previous section, we found that RLCs are associated with an overall increase in the 
number of accidents at an intersection. If RLCs provide a benefit in terms of reduction in 
severity, then we ought to see that when a RLC is placed at an intersection, Severe accidents 
decrease, and type C (possible) and Property Damage Only (PDO) crashes increase. 
 
Before we present the results of the regression analysis, let us take a look once again at 
Tables 4.2 and 4.3. The raw data show that at RLC sites: fatalities go from 0 to 1, A injuries 
go from 6 to 5, and B injuries decrease impressively. There is little change in C injuries or 
PDO accidents between the two periods. 
 
At the control sites, Table 4.3 shows that those intersections not involved with the RLC 
program saw a drop in fatalities from 10 to 8, an impressive drop in A injuries from 46 to 27, 
a substantial drop in B injuries (406 to 339), and moderate decreases in both C injuries and 
PDO crashes. With the exception of the B injuries, the intersections that were not part of the 
RLC program appear to be faring much better in terms of accident reduction. These patterns 
are similar to those seen with all types of accidents both county- and statewide. Table 6.1 
shows the overall severity pattern for all accidents occurring in Guilford County, North 
Caroina, from 1998 through 2002.14 We also show the pattern from the neighboring county of 
Forsyth for comparison, because it is of similar size and has not participated in a RLC 
program. 

                                                 
14 Complete data for the year 2003 is not at this time this report was printing 
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Table 6.1: NC County Accident Trends 

Guilford County (Contains Greensboro) (Pop.: 424,000) 
1998 1999 2000 2001 2002 Category 

Crashes   Injuries Crashes   Injuries Crashes   Injuries Crashes   Injuries Crashes  Injuries 

Fatal 60    69 46   49 56    58 55    61 45    48 

Non Fatal Injury 6,124   10,082 6,237   10,074 5,811   9,247 5,811   9,083 5,607   8,802 

PDO 7,291 7,841 8,076 8,071 7,763 

Total 13,475   10,151 14,124  10,123 13,943   9,305 13,937   9,144 13,415  8,850 
Forsyth County (Pop.: 310,000) 

Fatal 34     39 32    35 39    43 28    29 40    43 

Non Fatal Injury 3,266    5,120 3,121   4,872 2,947    4,608 3,054    4,639 2,958   4,568 

PDO 4,145 4,389 5,210 5,422 5,374 

Total 7,445    5,159 7,542   4,907 8,196    4,651 8,504    4,668 8,372   4,611 
From http://www.doh.dot.state.nc.us/preconstruct/traffic/Safety/ses/profiles/CountyProfiles.pdf 

 
If we apply the NCDOT’s cost estimates in Table 2.1 to the data on crash severity in tables 
4.2 and 4.3, the non-RLC sites saw a decrease in crash costs of 16.5 percent, whereas the 
RLC sites experienced an increase in crash costs of 4.9 percent over the same period. If we 
ignore the one fatality that occurred at the RLC sites during the after period, then the RLC 
sites would experience a decrease in costs of 16.2 percent. The reliable estimation of the risk 
of rare events such as fatal crashes at intersections is extremely difficult, yet should not be 
disregarded entirely. 

In the next section, we turn to the regression analysis to see what relationship is found 
between the placement of a RLC and the accident risk when the effects of weather, traffic 
volume, and intersection characteristics are controlled for. 

6.1.  Severe Crashes 
Table 6.2 shows the Poisson regression results for severe crashes. Similar to what the raw 
data showed us, the negative coefficient for MONTH describes an overall decreasing trend in 
severe accidents. This overall trend is likely in part due the increased use of airbags, child 
safety seats, crumple zones, and the like. The coefficient on RLCPRES is positive; however, 
the p value indicates that this positive estimate is neither large enough nor reliable enough to 
conclude that adding a red light camera is associated with an increase in severe accidents. 
However, it does contradict the hypothesis that RLCs produce a benefit by reducing the 
severity of accidents relative to other intersections.  

Another factor positively related to severe crashes is precipitation. For these severe crashes, 
there is a roughly one-to-one relationship with traffic volume (coefficient = .970).  
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Table 6.2: Severe crashes 
 Poisson Regression               
 Dependent variable         SEVERE    
 Weighting variable          None    
 Number of observations       17271    
 Log likelihood function     -3657.914    
 Restricted log likelihood    -3779.015    
 Chi squared           242.2018    
 Degrees of freedom           17    
 Prob[ChiSqd > value] =      .0000000    
 Chi- squared = 17542.73309 RsqP=  .0109   
 G - squared = 5438.12995 RsqD=   .0426   
 Overdispersion tests: g=mu(i):  1.019    
 Overdispersion tests: g=mu(i)^2:   .827    
 Robust (sandwich) estimator used for VC    
  
Variable Coefficient SE b/St.Er. P Value Mean X 
CONSTANT -12.123 1.041 -11.647 0.000   
MONTH -0.008 0.002 -3.759 0.000 29.000 
RLCPRES 0.091 0.162 0.563 0.573 0.029 
TOTLTL 0.069 0.047 1.465 0.143 1.640 
DEDRTL 0.131 0.071 1.846 0.065 0.446 
SWLK 0.109 0.086 1.265 0.206 0.432 
SLDMED 0.022 0.090 0.241 0.810 0.175 
PEDSIG -0.286 0.097 -2.953 0.003 0.257 
NLT 0.046 0.108 0.424 0.671 0.102 
NTR 0.218 0.075 2.898 0.004 0.208 
SNOW -0.010 0.025 -0.395 0.693 0.410 
PRECIP 0.026 0.016 1.690 0.091 3.645 
TOTLN 0.011 0.016 0.699 0.485 8.135 
ST1FLOW -0.142 0.073 -1.937 0.053 0.911 
ST2FLOW -0.142 0.073 -1.937 0.053 0.861 
ST1RED -0.029 0.038 -0.765 0.444 1.552 
ST2RED -0.029 0.038 -0.765 0.444 1.543 
AMBD1 -0.058 0.090 -0.644 0.520 0.569 
AMBD2 -0.058 0.090 -0.644 0.520 0.567 
ST1SP -0.007 0.008 -0.878 0.380 34.670 
ST2SP -0.007 0.008 -0.878 0.380 34.868 
Log(ADV) 0.970 0.088 11.067 0.000 10.134 

 
Note: RLC = Red light camera present (yes =1, no = 0), NTR = No turn on right, NLT = No left turn, LTA = Left turn 
allowed, DEDRTL = Dedicated right turn lane (yes = 1, No = 0), SWLK = Sidewalk (yes = 1, no = 0), PEDSIG  
= pedestrian signal (yes =1, no = 0), ST1FLOW =one-way traffic on road 1 (yes = 1, no = 0), ST2FLOW = one way 
road on road 2 (yes = 1, no = 0), ST1RED = All red time on road 1, ST2RED = All red time on road 2, ST1AMB  
= amber time on road 1, ST2AMB = Amber time on road 2, ADT = Average annual daily traffic volume. 
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6.2. Crashes Resulting in Possible Injury 
Besides severe crashes, those that police reports record as having caused possible injuries 
were also analyzed and their results are in Table 6.3. Here also, this type of crash has been 
decreasing over time, but we estimate a large (0.406), highly statistically significant 
(p<0.001) increase associated with the presence of a RLC. The coefficient on traffic volume 
is larger than 1.0, implying that higher volume roads will have many more C type accidents. 
We again see that snowfall decreases this type of accidents; however, the p value for 
precipitation is a bit too high (0.181) to be certain of an impact. 

6.3. Crashes Involving Property Damage 
Table 6.4 shows the results of crashes resulting in property damage. The overall pattern is 
very similar to what is seen with possible injury crashes. These crashes have also been 
decreasing over time as indicated by the negative (-0.004) and statistically significant 
(p<0.001) coefficient of time.  However, we once again see that the addition of a RLC to an 
intersection is associated with an increase in these accidents relative to what is happening at 
other sites.  

Pedestrian-crossing signals, longer amber times, and higher posted traffic-speed limits also 
are negatively related to crashes resulting in property damage. While pedestrian-crossing 
signals may allow drivers to exercise caution at intersections and reduce crashes, longer 
amber times, as noted previously, allow vehicles to proceed safely through intersections. 

Contrary to these findings are those variables in the table whose coefficients are positive and 
statistically significant; therefore, suggesting they are associated with an increase accidents 
that result in property damage. Notable among them are the total number of left turn lanes, 
dedicated right turn lanes, no left turn, and sidewalks. However, it is worth repeating once 
more that these are merely associations because there was very little intra-site variation in 
these intersection characteristics (aside from adding RLCs); we cannot say what would 
happen if these variables were changed. They describe what is seen, not what would be seen 
at intersections should one of these particular variables change. 
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Table 6.3: Crashes resulting in possible injury 
Poisson Regression               
 Dependent variable          CINJ    
 Weighting variable          None    
 Number of observations       17271    
 Log likelihood function     -9375.463    
 Restricted log likelihood    -10118.50    
 Chi squared           1486.078    
 Degrees of freedom           17    
 Prob[ChiSqd > value] =      .0000000    
 Chi- squared = 18504.36387 RsqP=  .0949   
 G - squared = 11987.31206 RsqD=    .1103   
 Overdispersion tests: g=mu(i):  4.738    
 Overdispersion tests: g=mu(i)^2:  4.788    
 Robust (sandwich) estimator used for VC    
  
Variable Coefficient SE b/St.Er. P Value Mean X 
CONSTANT -13.676 0.558 -24.503 0.000   
MONTH -0.003 0.001 -2.713 0.007 29.000 
RLCPRES 0.406 0.073 5.559 0.000 0.029 
TOTLTL 0.076 0.024 3.220 0.001 1.640 
DEDRTL 0.011 0.037 0.307 0.759 0.446 
SWLK 0.144 0.044 3.266 0.001 0.432 
SLDMED -0.098 0.048 -2.034 0.042 0.175 
PEDSIG -0.374 0.052 -7.172 0.000 0.257 
NLT -0.037 0.058 -0.628 0.530 0.102 
NTR 0.158 0.041 3.861 0.000 0.208 
SNOW -0.041 0.013 -3.220 0.001 0.410 
PRECIP 0.011 0.008 1.338 0.181 3.645 
TOTLN 0.002 0.009 0.187 0.852 8.135 
ST1FLOW -0.038 0.041 -0.928 0.353 0.911 
ST2FLOW -0.038 0.041 -0.928 0.353 0.861 
ST1RED 0.042 0.020 2.163 0.031 1.552 
ST2RED 0.042 0.020 2.163 0.031 1.543 
AMBD1 -0.163 0.045 -3.649 0.000 0.569 
AMBD2 -0.163 0.045 -3.649 0.000 0.567 
ST1SP -0.007 0.004 -1.872 0.061 34.670 
ST2SP -0.007 0.004 -1.872 0.061 34.868 
Log(ADV) 1.236 0.049 25.310 0.000 10.134 

 
Note: RLC = Red light camera present (yes =1, no = 0), NTR = No turn on right, NLT = No left turn, LTA = Left turn 
allowed, DEDRTL = Dedicated right turn lane (yes = 1, No = 0), SWLK = Sidewalk (yes = 1, no = 0), PEDSIG  
= pedestrian signal (yes =1, no = 0), ST1FLOW =one-way traffic on road 1 (yes = 1, no = 0), ST2FLOW = one way 
road on road 2 (yes = 1, no = 0), ST1RED = All red time on road 1, ST2RED = All red time on road 2, ST1AMB  
= amber time on road 1, ST2AMB = Amber time on road 2, ADT = Average annual daily traffic volume. 
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Table 6.4: Crashes resulting in property damage 
 Poisson Regression               
 Dependent variable          PDO    
 Weighting variable          None    
 Number of observations       17271    
 Log likelihood function     -12193.93    
 Restricted log likelihood    -13275.24    
 Chi squared           2162.625    
 Degrees of freedom           17    
 Prob[ChiSqd > value] =      .0000000    
 Chi- squared = 19202.31920 RsqP=  .1236   
 G - squared = 14662.59647 RsqD=  .1285   
 Overdispersion tests: g=mu(i):  7.193    
 Overdispersion tests: g=mu(i)^2:  7.431    
 Robust (sandwich) estimator used for VC    
  
Variable Coefficient SE b/St.Er. P Value Mean X 
CONSTANT -13.425 0.461 -29.113 0.000   
MONTH -0.004 0.001 -3.959 0.000 29.000 
RLCPRES 0.349 0.060 5.812 0.000 0.029 
TOTLTL 0.083 0.020 4.033 0.000 1.640 
DEDRTL 0.060 0.030 2.030 0.042 0.446 
SWLK 0.109 0.036 3.060 0.002 0.432 
SLDMED -0.073 0.038 -1.902 0.057 0.175 
PEDSIG -0.170 0.041 -4.177 0.000 0.257 
NLT 0.080 0.047 1.710 0.087 0.102 
NTR 0.036 0.035 1.031 0.302 0.208 
SNOW -0.011 0.010 -1.089 0.276 0.410 
PRECIP 0.005 0.006 0.795 0.427 3.645 
TOTLN 0.003 0.007 0.482 0.630 8.135 
ST1FLOW -0.154 0.032 -4.867 0.000 0.911 
ST2FLOW -0.154 0.032 -4.867 0.000 0.861 
ST1RED -0.010 0.018 -0.591 0.555 1.552 
ST2RED -0.010 0.018 -0.591 0.555 1.543 
AMBD1 -0.127 0.036 -3.525 0.000 0.569 
AMBD2 -0.127 0.036 -3.525 0.000 0.567 
ST1SP -0.009 0.003 -3.120 0.002 34.670 
ST2SP -0.009 0.003 -3.120 0.002 34.868 
Log(ADV) 1.296 0.041 31.268 0.000 10.134 

 
Note: RLC = Red light camera present (yes =1, no = 0), NTR = No turn on right, NLT = No left turn, LTA = Left turn 
allowed, DEDRTL = Dedicated right turn lane (yes = 1, No = 0), SWLK = Sidewalk (yes = 1, no = 0), PEDSIG  
= pedestrian signal (yes =1, no = 0), ST1FLOW =one-way traffic on road 1 (yes = 1, no = 0), ST2FLOW = one way 
road on road 2 (yes = 1, no = 0), ST1RED = All red time on road 1, ST2RED = All red time on road 2, ST1AMB  
= amber time on road 1, ST2AMB = Amber time on road 2, ADT = Average annual daily traffic volume. 
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7. Summary of Findings 
The results do not support the conventional wisdom expressed in recent literature and popular 
press that red light cameras reduce accidents. For example, McGee and Eccles (2003) 
conclude in their review that, “Most of the various studies and analyses show . . . reductions 
in angle crashes, with some showing smaller increases in rear-end crashes.” Our findings are 
more pessimistic, finding no change in angle accidents and large increases in rear-end crashes 
and many other types of crashes relative to other intersections. We did find a decrease in 
accidents involving a vehicle turning left and a vehicle on the same roadway, which may 
have been included as an angle accident in some other studies. However, given that these left 
turn accidents occur only one third as often as angle accidents, and the fact that we find no 
benefit from decreasing severity of accidents suggests that there has been no demonstrable 
benefit from the RLC program in terms of safety. In many ways, the evidence points toward 
the installation of RLCs as a detriment to safety. 

We summarize our findings for the variables that can be reliably interpreted in Table 7.1. We 
indicate a “ + ” for variables associated with increased accidents, and a “ – ”for those 
associated with a decrease in accidents. We only report associations with a minimum of a 10 
percent significance level. For most types of accidents there is a decreasing trend at all 
signalized intersections. However, in most cases, we see RLCs associated with an increase in 
accidents. 

Table 7.1: Summary of findings on types of accidents 
Variables Total 

crashes 
Angle 
accidents 

Rear End 
Slow / Stop 

Left 
turning  
vehicles 
in 
different 
directions 

Sideswipe 
a vehicle  
in same  
direction 

Other  
accidents 

Severe 
injury 

Possible 
 injury 

Property  
damage 

TREND - + - - + - - - - 
RLC +  + - +   + + 
SNOW -  -  -   -  
PRECIP +  + +   +   

Some of these findings, particularly that of a strong increase in rear-end collisions, is in 
accordance with our expectations. We had expected that upon seeing the signs for red light 
cameras, drivers may panic and try to stop, thus increasing rear-end collisions. The failure of 
a reduction in severe or angle accidents comes as somewhat of a surprise.  

Besides the effect of red light cameras, we should recap the effects of the other control 
variables used in the study. Precipitation was generally found to increase accidents, while 
snow was generally related to a decrease through its impact on traffic in southern cities. 
Various road signs and road characteristics generally associated positively with accidents at 
signalized intersections include no turn on red and no-left-turn traffic signs. Similarly, longer 
all-red time is positively associated with some types of accidents. In addition, it can be seen 
that the number of left-turn lanes is associated with larger accident rates, as are solid medians 
and dedicated right-turn lanes for some types of accidents. As previously noted in section 4.2, 
these are likely the result of efforts of GDOT officials to mitigate accidents at accident-prone 
locations prior to the period of this study. In other words, because there were few changes in 
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these variables at intersections during the study15, these estimates cannot be taken to be 
causal in nature. Our results also support previous research showing that longer amber times 
are associated with reductions in accidents.  

Consistently, the results show the positive relationship between traffic volume and accidents. 
This result is expected since traffic volume is basically an exposure rate, measuring the 
number of chances for accidents to occur. It is interesting to note whether or not this chance 
increases one-to-one with traffic volume or less so. Sideswipes and rear-end accidents 
occurred at an increasing rate as traffic volume increased, as did C injuries and PDO 
accidents. Some left turning accidents and “Other” accident rates declined as volume 
increased, possibly due to higher volume roadways reducing actual travel speed or increased 
driver diligence at heavily-traveled intersections. 

At a minimum, we can say that there is no evidence that the RLC program is decreasing 
accidents. Additionally, the data shows that the sites with RLCs are not benefiting from the 
overall decreasing trend in accidents in Greensboro.  There appears to be an increase in most 
types of accidents that correlates with the placement of a RLC at an intersection. This is 
surprising, given that regression to the mean bias usually causes a natural decrease in 
accident rates at locations chosen for a treatment such as a RLC.  

Because this is not a randomized trial, there is no certainty of a cause/effect relationship at 
work. However, the weight of the evidence points away from any conclusion of Greensboro’s 
RLC program increasing safety. We encourage others to perform additional, careful research 
in this area to confirm or contradict these results. As we have seen, simply looking at before 
and after statistics focusing on RLC sites will tell an incomplete and inaccurate story.  

 
 
 

                                                 
15 We focused on using intersections that had no major restructuring during the study time period. This 
allowed the study to focus on the changes due to RLCs. 
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APPENDIX A 
 
Analysis of Retting and Kyrychenko’s results 
 
 

As described in Retting and Kyrychenko (2002): 
A generalized linear regression model was developed to evaluate changes 

in total crashes, injury crashes, and specific crash types. The model used the natural 
logarithm of crash counts as the response variable. Independent variables were city, 
intersection type (signalized and nonsignalized), and period (before and after 
enforcement). Two-factor interactions of City x Period and City x Intersection Type 
also were included, because crash trends were different in different cities. Analysis 
of variance was used to test the statistical significance. 

Table 1 summarizes changes in the numbers of crashes from the baseline 
period through the enforcement period, for signalized and nonsignalized 
intersections. For the three control cities, the frequency of crashes changed in a 
roughly similar manner at both signalized and nonsignalized intersections. In 
Bakersfield and Santa Barbara, the number of crashes declined at both types of 
intersections; in San Bernardino, it increased. Table 1 also summarizes the effect of 
red light camera enforcement as evaluated by the model. We estimate that red light 
camera enforcement would reduce the number of crashes at signalized intersections 
in Oxnard by 7 % (95% confidence interval [CI]=1.3,12.5). 
(Page 1823) 

On the next page, in Table A.1, is the data as given in the Retting and Kyrychenko (2001) 
paper, along with dummy variables described earlier. In addition, each of the 16 observations 
is given a symbol (a through p) to simplify the equations that follow. 

Using the 12 dummy variables, along with a column of ones to represent the regression 
constant as the independent variable matrix, “X”, and the natural logarithm of the crash 
counts (represented by letters a-p) as the independent variable vector, we derived the 
formulas for the coefficient estimates (Betas) in terms of the independent variables by using 
the least squares formula: 

YXXXB ')'( 1−
=  

 
The formulas for the regression coefficients are represented algebraically in Table A.2. 
Representing them in this way allows one to see how the various data used do (or do not) 
interact in calculating the coefficients. Clearly, the other three cities’ data have no impact on 
the coefficient for the presence of the red light camera (denoted by Camera? in the table).  
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Table A.1: Data used in replicating Retting and Kyrychenko (2002) 

 
 

 

 
 
 
 
 
 
 
 

 

 
 

 

 

 

 

 

Symbol   Count Log(count) Cam? Bakers Sbern Sbarb Sig? Bef. BakBef SBernBef BakSig SBernSig SBarbSig SBarbBef 

a before ns Bakers 760 6.63332 0 1 0 0 0 1 1 0 0 0 0 0 

b  S  771 6.64769 0 1 0 0 1 1 1 0 1 0 0 0 

c  ns Sbern 1220 7.10661 0 0 1 0 0 1 0 1 0 0 0 0 

d  s  1324 7.18841 0 0 1 0 1 1 0 1 0 1 0 0 

e  ns Sbarb 712 6.56808 0 0 0 1 0 1 0 0 0 0 0 1 

f  s  488 6.19032 0 0 0 1 1 1 0 0 0 0 1 1 

g  ns Oxnard 994 6.90174 0 0 0 0 0 1 0 0 0 0 0 0 

h  s  1322 7.1869 0 0 0 0 1 1 0 0 0 0 0 0 

i After ns Bakers 753 6.62407 0 1 0 0 0 0 0 0 0 0 0 0 

j  s  739 6.6053 0 1 0 0 1 0 0 0 1 0 0 0 

k  ns Sbern 1283 7.15696 0 0 1 0 0 0 0 0 0 0 0 0 

l  s  1400 7.24423 0 0 1 0 1 0 0 0 0 1 0 0 

m  ns Sbarb 622 6.43294 0 0 0 1 0 0 0 0 0 0 0 0 

n  s  438 6.08222 0 0 0 1 1 0 0 0 0 0 1 0 

o  ns Oxnard 1011 6.9187 0 0 0 0 0 0 0 0 0 0 0 0 

p  s  1250 7.1309 1 0 0 0 1 0 0 0 0 0 0 0 
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Table A.2: Regression coefficients as functions of the dependent variables, i.e. natural 
logarithms of crash counts 

Camera?  −  +  − g o p h  

Bakersfield 
 +  −  +  − 

1
4 a

3
4 i

1
4 b

1
4 j o

 

SanBernadino 
−  −  +  +  + 

1
4 d o 1

4 l 3
4 k 1

4 c
 

SantaBarbara 
−  −  +  +  + 

1
4 f o 1

4 e 1
4 n 3

4 m
 

Signalized? −  + g h  

Before  − g o  

Bak*Bef 
−  +  −  +  −  + g 1

2 a 1
2 i 1

2 b 1
2 j o

 

SBern*Bef 
−  +  +  −  −  + g 1

2 d o 1
2 l 1

2 k 1
2 c

 

Bak*Sig 
−  +  +  −  −  + 

1
2 a 1

2 b g h 1
2 i 1

2 j
 

SBern*Sig 
−  +  +  −  −  + 

1
2 c

1
2 d g h

1
2 k

1
2 l

 

SBarb*Sig 
−  +  +  −  −  + 

1
2 e 1

2 f g h 1
2 m 1

2 n
 

SBard*Bef 
 −  +  +  −  − 

1
2 f g o 1

2 e 1
2 n 1

2 m
 

Constant o  
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APPENDIX B 
Additional Models Tested for Robustness and Consistency Checks 
 
The authors checked many other possible model formulations and possible confounders. 
Though the estimates and details changed under each model, the overall conclusions 
discussed in this report were robust to many different specifications. Below is a partial list of 
these models. 

A) We ran many different models checking for various nonlinear trend functions. We 
allowed for curved trends, a slope and intercept shifter when the RLC program began (testing 
for spillovers), and slope and intercept shifters at the RLC sites only. None of these showed 
an interesting relationship changing the overall results. 

B) We corrected for overdispersion in several ways. The statistical significance of the key 
variables was unchanged.  

C) Because the 303 intersections include some with very low traffic volume, we ran the 
models restricting the observations to those with ADV similar to the RLC sites (between 
29,000 and 63,000). The only substantial effect was that using this sample, RLCs were 
statistically significantly associated with in increase in angle accidents. 

D) During the period of study, North Carolina restricted the driving privileges of teenagers so 
that they could not carry more than one other unrelated person under 21 in the vehicle. This 
went into effect in December 2002 and appeared to have no effect on the data when we 
included it as a variable. 

E) We ran fixed effects models dropping the intersection characteristics, since there was so 
little within site variation. The overall results remained unchanged. 

 
 
 
 
 
 
 
 
 
 


